
SHOULD THE DOD MANDATE A
STANDARD SOFTWARE DEVELOPMENT PROCESS?

Donald G. Firesmith
Software Methodologist

Magnavox Electronic Systems Company
Fort Wayne, Indiana

Abstract

This paper addresses the question of whether
the DoD should mandate via "Defense System Soft-
ware Development" (DOD-STD-2167) a standard
software development process and life-cycle on
private industry. It also questions the cost-
effectiveness of establishing either required or
default software development methods. It details
both general problems with process standards for
software development as well as specific problems
relating to DOD-STD-2167. It concludes with the
author's recommendations for solving these
problems.

Keywords

DOD-STD-2167, Life-cycle, Process Standards,
Software Development Methods

Acknowledgement

The author would like to acknowledge that
this paper is heavily based upon the input pro-
vided by many members of the Ada (*) community to
the SIGAda Software Development Standards and Ada
Working Group (SDSAWG) I as part of the review
process of DOD-STD-2167A. The author, however,
takes sole responsibility for the opinions and
recommendations contained herein. This paper
does not, therefore, expressthe official posi-
tion of the ACM, SIGAda, the SDSAWG, or Magnavox
Electronic Systems Company.

Introduction

DOD-STD-2167 should be viewed from a histor-
ical perspective. The opinion seems to have been
that many software contractors did not know how
to properly develop software --otherwise, why
would so many products of questionable quality be
delivered overdue and overbudget? One of the
DoD's answers to this software crisis was to
teach industry how to develop software by
mandating a "proven" process and life-cycle and
by establishing "proven" default methods.

Like MIL-STD-1679 before it, DOD-STD-2167 is
a process standard that "establishes a uniform
software development process ''= and mandates
"requirements to be applied during the develop-
ment ... of software in Mission-Critical Computer
Resources ''3. Unlike its predecessors, however,

DOD-STD-2167 is a Tri-services standard which
will be a requirement on a great many projects.

DOD-STD-2167 mandates the classic "water-
fall" developmental life-cycle, and its basic
process is strongly tied to that life-cycle.
DOD-STD-2167 also either mandates, or establishes
as a default, certain specific methods such as
the use of a set, and standard formal reviews,
the use of Program Design Languages (PDL's), and
Software Development Files (SDF's), and decompo-
sition methods that are functional and hierarchi-
cal. DOD-STD-2167 therefore restricts the con-
tractor to those software development methods
that are consistent with these requirements and
defaults. This approach, as we shall see, is not
without serious drawbacks.

Before looking at these problems, however,
it is valuable to first consider the DoD's posi-
tion with regard to DOD-STD-2167.

The DOD's Position

The Computer Software Management Subgroup of
the Joint Logistical Commanders (JLC/CSM) is
currently responsible for DOD-STD-2167. The
position of the DoD, as stated by the JLC/CSM
Subgroup, is that:

"DOD-STD-2167 should be a process, as
well as a product, standard. As currently
defined, the software development process is
driven by the DoD Acquisition process and
must be an integral part of that process. In
order for the government to maintain a com-
mon, single development process throughout a
variety of software development projects, it
is necessary for DOD-STD-2167 to define and
direct the methodology for developing soft-
ware. For those instances in which the
contractor does not propose a development
methodology in the Software Development Plan
(SDP), a DEFAULT methodology is required.
In these instances, the government must
define the development methodology used in
order to maintain control over software
development. The government directed
DEFAULT methodology is ... directed ... ONLY

(*) Ada is a registered trademark of the U.S.
Government (AJP0).

Joint Ada Conference 1987 159

when the contractor has not specified an
alternative development methodology. A
contractor always has the option of pro-
posing an alternative methodology in the
SDP. While the JLC/CSM Subgroup recognizes
that a process standard inhibits innovation
to some degree, it must be emphasized that
DOD-STD-2167 does not prohibit the use of
different development methodologies than
those defined in the standard. If a diffe-
rent development methodology is used, it
must be documented in the SDP and will be
subject to government disapproval. The
intent of DOD-STD-2167 is to allow the con-
tractor to propose what he believes to be
the best development methodology for a
particular software project. ''4

General Problems

The question should not be whether the soft-
ware development process, methods, and life-
cycle mandated by DOD-STD-2167 are the best ones
currently available; that is debatable. The
question is whether any single process, method,
or life-cycle, however general, should be manda-
ted on the contractor. Even the best current
process, methods, and life-cycle rapidly become
obsolete as our industry evolves. By singling
out a specific process, life-cycle model, and set
of methods in DOD-STD-2167, the DoD is ensuring
that the standard will become obsolete sooner
than is necessary. And because the standard can-
not be easily and rapidly updated, this will
certainly have major negative consequences on the
development of DoD software.

The following general problems have been
raised with regard to the process standard nature
of DOD-STD-2167:

"How to" Constraints. Although the "intent
of (DOD-STD-2167) is to permit any systematic,
well-documented, proven software development
methodology ''2, process standards must, by
definition, contain "how-to" restrictions. By
mandating a standard life-cycle and activities
based upon the phases of this life-cycle, DOD-
STD-2167 is no exception. DOD-STD-2167, there-
fore, permits only those software development
methods that are consistent with its mandated
process. Other methods are permitted only if one
either proposes the inconsistent methodology in
the SDP or tailors the requirements out, both
approaches that are difficult and not without
significant economic risk to the contractor.

Although it may be reasonable for the gov-
ernment to adopt a process standard to dictate
how the government is to PROCURE software, it is
something else entirely to mandate via a process
standard how contractors are to DEVELOP software.
This is an improper "how to" constraint on the
contractor. Therefore, DOD-STD-2167 is in direct
violation with the government's own Acquisition
Streamlining Directive s which states: "As a
first priority, this Directive establishes policy
for streamlining ... contract requirements by:
(a) Specifying contract requirements in terms of

the results desired, rather than 'how-to-design'
and 'how-to-manage'...". This directive mandates
further that "a contractor's management systems,
internal procedures, methods, processes, and data
products shall be used instead of specifying
other approaches unless the acquisition activity
determines that the contractor's approaches can-
not satisfy the program needs." Thus the govern-
ment should mandate WHAT products it wants, not
HOW the contractor is to develop these products.
It is clearly the contractor's, and not the gov-
ernment's, responsibility to define the process,
methods, and life-cycle model to be used to pro-
duce software.

0necounter argument is that an important
objective of the Software Standardization Program
of the JLC was to establish a well-defined and
easily understood software development process.
DOD-STD-2167 was thus intended to be a process
standard, was meant to d$ctate "how to" con-
straints, and has fulfilled its intention. For
years, while software has become an ever larger
part of any giyen system, the government has
operated without a standard process for procuring
software. This lack of a standard has resulted
in many failures and additional expense.

However, there is a great difference between
a process standard for procuring software and one
for developing it. And as far as failures and
additional expense are concerned, one can easily
argue that the "how to" constraints have not, and
cannot, solve the software crisis but rather have
added greatly to the cost of defense software.

Another counter argument is that the con-
tractor is free to propose an alternative soft-
ware development process, method, or life-cycle
so long as it is specified in the Software Devel-
opment Plan (SDP) and is not disapproved by the
contracting agency. If the contracting agency is
truly interested in innovative approaches, the
requirements and defaults of DOD-STD-2167 do not
necessarily prejudice them.

However, although defaults may not unduly
influence all contracting agency personnel, many
developers are convinced that this is a real
problem with numerous such personnel. Thus,, the
ability to propose an alternative (i.e., to
ignore all or part of DOD-STD-2167) is an insuf-
ficient loophole since many contractors will
certainly feel pressured to comply with the stan-
dard to win contracts. (Note: I will have more
to say about this later.)

Another counter argument is that default
approaches are needed for those instances where
the contractor has not defined a software devel-
opment process.

However, this is clearly specious because
paragraph 5.1.i.3.c.I of DOD-STD-2167 already
requires the contractor's proposed software de-
velopment methods and techniques to be documented
in paragraph 10.2.5.1 of the Software Standards
and Procedures Manual. Although not mentioned in
the text of DOD-STD-2167, the exact same require-

160 Joint Ada Conference 1987

ment is also REDUNDANTLY stated in paragraph
10.2.7.1.1 of the DID for the Software Develop-
ment Plan. Besides, when a contractor does not
propose a process or methods, the SSMP and SDP
should be rejected as nohcompliant rather than
mandating a single, standard, default approach
that may well not be appropriate.

Innovation Inhibition. Process standards
inhibit innovation. Due to the perceived politi-
cal and economic risks of proposing anything
different than what the contracting agency ex-
pects, there is a very natural tendency for con-
tractors to hesitate proposing software develop-
ment processes, methods, and life-cycles that
significantly deviate from those of DOD-STD-2167,
regardless of their technical merit. The manage-
ment of several companies have already mandated
compliance with DOD-STD-2167 on their technical
staffs and use this policy as part of their
marketing strategy. Yet innovation is necessary
and must be promoted in a rapidly evolving in-
dustry in which major improvements are necessary
to solve the software crisis. Software engineer-
ing advances happen almost daily, and our foreign
competition excels over us in technology inser-
tion. It is not enough that some Requests for
Proposals (RFP's) state that an innovative meth-
odology is favorably considered in the contractor
selection criteria. DOD-STD-2167 must also en-
courage innovation.

To quote General George S. Patton, Jr.:
"Never tell anyone how to do something. Tell
them what needs to be done. They will surprise
you with their ingenuity."

The counter argument has been raised that
innovation is not for large systems acquired with
taxpayer dollars, that the software development
process, methods, and life-cycle used should be
well understood, generally accepted, and have
stood the test of time. Thus, DOD-STD-2167
"incorporates practiceswhich have been demon-
strated to be cost-effective from a life-cycle
perspective. ''~ New methods and life-cycles
should first be proven on research and prototype
projects.

However, systems grow larger and more com-
plex as time goes by, and software development
processes, methods, and life-cycles do not usu-
ally scale up. Are we to believe that projects,
such as the Strategic Defense Initiative, are
best accomplished using a process little changed
since the early 1970's?

Standard Obsolescence. By its very nature,
most of the DoD (certain advanced R&D efforts
excluded) will always be technically several
years behind industry, and even further behind
the research community. Thus, it is vital that
the contractor be encouraged to apply the methods
it believes are most appropriate for producing
the product and associated documentation that the
DoD needs at the least possible cost, while still
providing the government adequate oversight into
the contractor's development effort.

The current DOD-STD-2167 has been developed
using a process that ensures through numerous
government and industry reviews that the standard
is acceptable to the majority of those who must
use it. While very laudable in principle, this
consensus nature of DoD standards development is
not without its disadvantages when applied to a
process standard. Some companies take conserva-
tive approaches to software development, while
others use methods that are more advanced. Any
specific process acceptable to the majority of
industry and government must therefore lag signi-
ficantly behind the state-of-the-art. Thus, the
objective of the JLC Software Standardization
Program to integrate modern methods of developing
software into DOD-STD-2167 is probably both
inappropriate and impossible.

Acquisition Process Drivers. The basic
process mandated by DOD-STD-2167 and the
remaining standards is partially based upon the
DoD acquisition process which was historically
developed to support hardware and systems
acquisition rather than software acquisition. As
a consequence, the basic life-cycle and review
process is not necessarily consistent with the
most modern ways of developing software. This
becomes especially important in light of the
DoD's recent realization of the prime importance
of software development to systems development.

Process Inappropriateness. Because the best
software development process, method, and life-
cycle are clearly application and implementation
language specific, it is surely counterproductive
for the DoD to choose any specific ones as either
requirements or defaults (and therefore
preferred).

The following arguments have been raised in
favor of keeping DOD-STD-2167 as a process
standard:

i. The lack of a standard software development
method complicates the training of government
personnel and leads to problems when personnel
frequently transfer and are unable to apply their
knowledge from the old project to the new. A
single, standard process allows the government to
train its managers and technicians so that they
may work effectively with a contractor on a pro-
ject. The best contractor-proposed method will
not result in better software if the government
does not understand it.

These typical advantages of standardization
are probably the strongest arguments for keeping
DOD-STD-2167 as a process standard. However, any
advantages that the government would gain from
maintaining "a common, single development process
throughout a variety of software development
projects ''4 would be outweighed by the inhibi-
ration of innovation that would result.

2. Some people feel that it is not clear that
there is yet sufficient justification for allow-
ing the contractor to alter such fundamental
concepts such as the DoD acquisition process and

Joint Ada Conference 1987 161

the DoD established software development process,
methods, and life-cycle model.

However, the DoD did not introduce the Ac-
quisition Streamlining directives without valid
reasons. Innovation is necessary for the con-
tinued growth of the defense software industry.
Besides, a small number of contractors do this
via tailoring now.

3. The contractor may not have the expertise to
propose and implement an alternative process,
method, or life-cycle.

However, if the contractor does not have
such expertise, then the contractor should not be
developing software.

4. The government is probably not qualified to
evaluate contractor-proposed processes, methods,
or life-cycles. Even when contracting agency
personnel are so qualified, the evaluation of
alternatives would be subject to argument.

However, just as contractor personnel must
always keep up with a rapidly evolving technology
if they are to remain competitive, government
personnel must do so also. One hardly expects
government personnel familiar only with vacuum
tube technology to manage and maintain modern
computer systems, and what applies to hardware
applies equally to software. If the government
is not qualified to evaluate contractor-proposed
processes, methods, or life-cycles, then the
government should hire an independent expert.
After all, this is one of the standard IV&V con-
tractor's jobs.

5. Because only the classic software develop-
ment process, methods, and life-cycle mandated by
DOD-STD-2167 have been proven to work, any alter-
nate contractor proposed approach involves an
unacceptable risk. The government needs to feel
comfortable that the project will succeed prior
to spending large amounts of money.

However, as has been previously mentioned,
it is not at all clear that the classic approach
is the only one that has been proven to work. In
fact, one can argue that it has often failed to
ensure the goals of the DoD. No approach is
without risk, and one must wonder how often the
risk of trying something new is unacceptable for
technical or economical reasons, and how often
the reasons are psychological and social.

6. Although the government is comfortabl e with
the software development process mandated in DOD-
STD-2167, it will not restrict other methods if
the contractor definitely shows during proposal
evaluation how the government will gain in cost
effectiveness and/or lower risk. All other fac-
tors being equal, the contractor who proposes to
follow DOD-STD-2167 should lose out to any con-
tractor who proposes a clearly better method.

However nice this is in theory, I am afraid
that things are not always the way they should be
in practice. Many contracting agency managers

are not aware of current trends in software en-
gineering and are unwilling to take what they
perceive as unnecessary risks. Even when they
look favorably on innovative solutions to their
problems, industry managers may well not be
willing to propose something other than what DOD-
STD-2167 requires or has as a default.

7. It is the contractor's responsibility to
ensure that the process used complies with gov-
ernment standards for software development.

One can argue, however, that the contractor
has a higher duty to propose the best approach
possible. Giving the contracting agency what it
expects is not always in the DoD's best interest.
The contractor should feel free to use its exper-
tise to propose the best solution to the govern-
ment's problems.

8. The government does not usually pay industry
to develop new methods unless the new methods
produce lowered cost, less risk, increased
quality, etc.

However, the government should encourage
industry to use new methods already developed and
not inhibit industry from the development of new
ones.

9. The government must define phase boundaries
and milestones to be able to manage the software
development process.

Although the government must have some phase
boundries and milestones if it is to properly
manage the software ACQUISITION process, it does
not follow that any single specific set of phase
boundries and milestones is optimal for all pro-
jects. Nor does it follow that the government is
best able to define them. It is government's
responsibility to manage the software acquisition
process and industry's responsibility to manage
the software development process.

i0. The situation is no different than it was
with MIL-STD-483, MIL-STD-490, and MIL-STD-1679.

Though true, this is hardly a justification
for keeping a less than perfect status quo.

Specific Problems with DOD-STD-2167 Process

One of the many causes of the software
crisis is that the classic software development
process mandated by DOD-STD-2167 has not always
been successful on large projects. The "proven"
process, method, and life-cycle have rarely
worked as well as promised and have often stood
in the way of innovation.

The following specific problems have been
raised with regard to the DOD-STD-2167 process:

Life-CycleConstraint. Many new developmen-
tal life-cycle models have been introduced during
the last few years, and others will continually
be created as software engineering evolves.
Several are fundamentally different from the

162 Joint Ada Conference 1987

classic waterfall life-cycle and can not be
mapped into it. Notable examples of methods
having life-cycles prohibited by DOD-STD-2167
include certain rapid prototyping methods, AI
methods, and recursive development methods such
as 0bject-0riented Development 6 . As Judah
Mogilensky has put it: "The classical 'waterfall'
life-cycle is to modern software management as
global common data structures is to Ada software
design." Thus, requiring conformity to a single
standard life-cycle model is an improper "how to"
restriction placed on the contractor.

The counter argument that all life-cycle
models are minor variations of the classic water-
fall life-cycle and are thus permitted within
DOD-STD-2167 is simply not true.

Other counter arguments (e.g., that DOD-STD-
2167 recognizes that the phase boundries of the
classic waterfall life-cycle are not distinct,
that considerable overlap of phases is permitted,
and that iterative software development is per-
mitted) are true, but do not really address this
issue because of the DOD-STD-2167 and MIL-STD-
1521 requirements that specific products be de-
veloped and reviewed during specific life-cycle
phases. While more life-cycle models are con-
sistent with DOD-STD-2167 than with MIL-STD-1679,
there are still other models which are pro-
hibited.

Functional Decomposition Constraint. The
functional emphasis of the Software Requirements
Specification, the functional aspect of certain
design entities (e.g., unit) of the static soft-
ware hierarchy of DOD-STD-2167, and the way this
hierarchy is tied to the software development
process tends to force the developer into using a
functional, hierarchical-decomposition software
development method.

Thus, the static software hierarchy is tied
too closely with the software development pro-
cess, prohibiting one from first developing the
proper Ada structure and only then decomposing it
into a static hierarchy for purposes of Software
Configuration Management. The static software
hierarchy of DOD-STD-2167 also does not map well
into the network structure of well-designed Ada
software, and impacts the order and scope of
integration and testing. This, however, should
be method, language, and software architecture
dependent. This problem is another example of
improper "how to" constraints on the contractor.

Top-Down Constraint. Paragraph 4.8 of DOD-
STD-2167 states: "The contractor shall use a top-
down approach to design, code, integrate, and
test all CSCI's unless specific alternate meth-
odologies have been proposed ... and received
contracting agency approval." This choice of
"top-down" as the single default development
approach implies that it is the preferred ap-
proach for all software development activities.
Yet the appropriateness of "top-down," "bottom-
up," "outside-in," "inside-out," or "holistic"
approaches is language, application, method, and
life-cycle dependent. Examples of situations

where other approaches may well be preferable
include:

(1) Extensive reuse often implies a
"bottom-up" approach to design and
test.

(2) The compilation order restrictions of
Ada encourages a "bottom-up" approach
to CSC testing.

(3) The development of critical software
implies "bottom-up" design and
testing.

(4) The development of test suites requires
at least a partial "bottom-up"
approach.

This requirement is therefore an improper
"how to" restriction on the contractor.

The counter argument that "top-down" is the
currently preferred approach of many is irrele-
vant because a consensus rarely produces state-
of-the-art approaches and because any default is
subject to obsolescence.

The counter argument that all design methods
are top-down is just incorrect. Not only do many
other approaches exist, it can be argued that
every major project should use a combination of
methods.

The counter arguments that most of the
bottom-up examples are subject to debate (e.g.,
there are strong arguments for "top-down" test-
ing) miss the point that other methods exist and
the contractor should be free to use the best
method for his specific application.

Program Design Language Constraint. Para-
graph 5.2.1.4 of DOD-STD-2167 makes the use of a
PDL the default method for the top-level design
of each CSCI and paragraph 5.3.1.5 mandates the
use of a PDL in the development of the detailed
design.

But the use of a PDL as a top-level design
description method is probably inappropriate.
Graphics, such as those of Booeh ? and Buhr 8
are clearly superior in terms of understandabi-
lity when it comes to presenting top-level archi-
tectural designs in terms of software units and
their relationships.

The use of a PDL as a detailed design de-
scription method is also becoming inappropriate.
Due to the high modularity and low complexity of
well-designed Ada units, the lack of distinction
between Ada PDL and Ada code, and the design
aspects of the Ada specification, the nature and
purpose of PDL is changing in the Ada community.
PDL is not needed to document the logic of the
body of many units because of their trivial size
and complexity.

The PDL requirement and default probably
resulted from findings that the use of PDL's

Joint Ada Conference 1987 163

increased productivity and reduced life-cycle
costs compared to the use of flow-charts. They
certainly are useful for specifying the internal
logic of programs written in low-level languages
or resulting from software development methods
that produce relatively large and complex unit
bodies. PDL, especially when viewed as a program
documentation language, may also prove useful in
the automatic generation of Software Detailed
Design Documents. However, it is inappropriate
to imply that the use of PDL's, or any single
detailed design method or tool, is to be pre-
ferred under all circumstances. This inhibits
innovation and is an improper "how to" con-
straint on the contractor.

One counter argument often heard in govern-
ment circles is that defaults do not necessarily
prejudice the contracting agency. If the custo-
mer is truly interested in "graphic methods",
then the PDL default should not adversely affect
this. However, although defaults may not unduly
influence all contracting agency personnel, many
developers are convinced that this is a real
problem.

Another counter argument is that specifying
the use of a PDL does not necessarily specify how
it is to be used. Although this is true, it
would nevertheless be hard to argue that a
graphic method is a PDL.

"Informal" Test Constraints. DOD-STD-2167
currently contains many requirements and defaults
regarding the performance and documentation of
informal (i.e., contractor-internal) testing.
These improper "how to" constraints cover such
areas as the documentation of unit-level test
requirements, responsibilities, schedules, test
cases, procedures, and results in the Software
Development Files; the default for individual
testing and configuration management; the impli-
cation that units are integrated individually
into Computer Software Components (CSC's); and
the required documentation of considerable infor-
mation concerning contracter-internal CSC inte-
gration and testing in the Software Test Plan.
Many developers view these process and documenta-
tion requirements as not being cost-effective in
many cases and as an unnecessary and unwanted
micro-management by the government that forma-
lizes "informal" testing.

Review Process Constraints. The size and
complexity of today's systems overwhelm the for-
mal review process of DOD-STD-2167 and MIL-STD-
1521. It is not humanly possible to properly
perform technical reviews on manually-produced
"gothic novel" sized specifications. There is
often insufficient time for a proper in-depth
analysis and the correction of errors found. The
reviews therefore tend to concentrate on super-
ficial formatting problems while important tech-
nical issues become buried. The forest gets lost
for the trees.

By allowing the contractor to greatly limit
the scope of any single review, a better analysis
would result for the following reasons:

(a) Smaller documents and partial documents
are easier to review. There is less
reviewer fatigue and the end of the
documents will be reviewed with the
same care as the beginning. Currently,
the tail end of larger documents often
"slide by" due to reviewer fatigue,
lack of time, etc.

(b) Because smaller documents and partial
documents can be prepared with less
lead time, they will be more current
when reviewed.

(c) Because smaller documents and partial
documents take less time to produce and
review and have a more narrow scope, a
small percentage of the project's per-
sonnel grind to a shorter stop.

(d) Having a larger number of smaller re-
views makes each single review less
important. By becoming part of the
(almost weekly) development activities,
the developers are less impacted by
"non-productive" work; the "dog and
pony show" atmosphere is reduced.

(e) If any "show stoppers" are discovered,
they will likely be limited in scope
and result in holding up the develop-
ment process for a shorter period
(e.g., corrections can be processed in
a recap session).

(f) Spreading out each review permits
better contractor man-power leveling by
overlapping the requirements analysis,
design, and coding of separate ele-
ments. The same advantages offered in
DOD-STD-2167 now for the separate re-
view of different CSCI's and incremen-
tal reviews (e.g., for each build or
release) would also result if applied
to smaller, relatively independent
"chunks" of software (e.g., those re-
sulting from each recursion of the
Object-Oriented Development process).

(g) Major process problems will show up
earlier when they will be easier and
less expensive to correct.

Although DOD-STD-2167 allows incremental
reviews, the linear nature of the classical life-
cycle with its formal reviews that act as bottle-
necks between phases (4.1.2) prohibits the use of
recursive "design a little, code a little, test a
little" methods. Thus, although DOD-STD-2167
permits a small number of incremental PDR's per
CSCI per build or release, it does not permit
methods such as Object-Oriented Design in which
small amounts of code (e.g., approximately IKLOC)
are recursively designed, coded, and tested dur-
ing each pass through the method. On large pro-
jects (e.g., > 100KLOC), it is clearly impracti-
cal to hold several hundred traditional CDRs and
PDR's. The bottleneck nature of the formal re-
views also prohibits one from coding and testing

164 Joint Ada Conference 1987

as one goes -- an important aspect of such
methods that permits one to incrementally vali-
date the evolving design.

Because all methods do not produce the same
intermediate products in the same order, the
scope of the current reviews is sometimes inap-
propriate.

The timing and the scope of the results of cer-
tain design activities are set by the timing and
nature of the formal reviews. This is an im-
proper "how to" constraint on the contractor.

Critical Design Review. The process of DOD-
STD-2167 does not account for the evolving nature
of the Critical Design Review (CDR).

Due to the high modularity and low complex-
ity of well-designed Ada software, the lack of
distinction between Ada PDL and Ada code, and the
design aspects of the Ada specification, the
classic purpose of the CDR (i.e., to review and
approve unit-internal logic prior to coding) is
no longer relevant. Coding the Ada specification
is a design activity. PDL is not needed to docu-
ment the logic of the body of many units because
of their trivial size and complexity. One should
go ahead and code the body once started since it
involves little added work and allows one to use
the compiler to partially check the results prior
to any (semi)formal review. By performing the
unit testing immediately, one can also validate
the design as one goes.

With the use of the same language for both
design and implementation (e.g., Ada), there
exists a very real non-trivial problem of de-
fining what is design and what is code. This has
a very real impact on determining the scope of
the CDR as currently defined.

By requiring at CDR and prior to coding and
unit test, a formal review of the "detailed de-
sign," one is prohibiting the contractor from
using RECURSlVE software development methods that
result in the hierarchical top-down design, code,
and test of very small amounts of software (e.g.,
approx. IK SL0C). This is a very major and im-
proper "how to" constraint on the contractor.

Delay Problems. On large projects, the DOD-
STD-2167 process results in a long delay between
requirements definition and their implementation.
During this time, contracting agency personnel
are likely to change, causing the project to be
subject to different "hot buttons" and large
changes in requirements. Contractor personnel
turnover is also likely, resulting in the loss of
the rationale for certain key decisions.

Lack of Intermediate Software. Useful soft-
ware does not exist until the end of the develop-
ment life-cycle. Thus, it is not until the end
of a build, release, or project that one has a
product that:

(a) Validates requirements and design
(b) Is testable
(c) Is subject to user scrutiny.

This is a major argument for prototyping and
also one of the incentives that has tempted some
contractors to rush into coding without a system-
atic software development method or adequate pre-
paration.

Prototype Inhibition. Although the use of
prototypes has long been recognized as an impor-
tant and productive technique in every engineer-
ing field, it is something for which DOD-STD-2167
does not adequately allow. The DOD-STD-2167
development life-cycle is also inconsistent with
that of several prototyping models. 0nly by
building prototypes, in addition to producing a
"paper" design, can one verify the feasibility of
the design. And this is perhaps one of the
reasons why hardware engineering has advanced
beyond software engineering.

Reuse Inhibition. The top-down development
process mandated by DOD-STD-2167 seems based on
the tacit assumption that all software will be
built from scratch. This thwarts one of the
major goals of Ada use, namely the production and
use of libraries of reusable software. Isolated
references to the importance of reusability in
DOD-STD-2167 are insufficient if the general
process inhibits it.

Automation Inhibition. To increase the
efficiency of the software development process
and to increase the quality of the resulting
software and documentation by reducing human
error, significant portions of the process need
to be automated. This includes, but is certainly
NOT limited to, the production of documentation.
DOD-STD-2167 seems based on the tacit assumption
that all software is to be built from scratch by
performing all activities of the prescribed pro-
cess in accordance with the standard life-cycle.
Yet when significant portions of the life-cycle
are automated, this will have a major effect on
the description of these required activities and
the associated reviews. It is not at all clear
that this can be adequately or efficiently
handled by merely deleting requirements from DOD-
STD-2167, the only method of tailoring allowed.

A counter argument to part of the automation
problem is that the government will only want to
pay for automation if it can be proven to be
cost-effective. Automation in and of itself is
not necessarily good. In judging the cost-effec-
tiveness of something, trade-offs should be per-
formed. Does the readibility of the code or
document suffer from the automation so that re-
viewing and maintenance takes longer and costs
more? If such questions are ignored until too
late, the project will suffer.

While the above counter argument raises
valid questions, they must be weighed against the
improved quality and productivity that are the
goals of automation. The manual production of
anything opens the doors to human error. Much of
documentation consists of translating design
information from one format (e.g., that of the
working documentation or software structure) into
another (i.e., the required format of the de-
liverable documentation). When this translation

Joint Ada Conference 1987 165

is performed by hand, things tend to fall through
the cracks and transcription errors occur resul-
ting in an inconsistency between the software and
its documentation. When documentation is manu-
ally produced, it is not always updated to incor-
porate changes in design due to the large amount
of effort involved. Much the same can be said
about the process of "translating" requirements
into design and "translating" design into soft-
ware. And as for making the reviews take longer
and cost more, one can argue that because automa-
tion should entirely eliminate certain classes of
errors, the reviews should be more productive
since reviewers will not need to spend time
finding such errors.

The following arguments for the current DOD-
STD-2167 process have been raised:

I. One important feature of the DOD-STD-2167
process is that it ensures the production of
intermediate products that can be used to restart
the process should development be stopped mid-
stream.

However, the DOD-STD-2167 process is not the
only one that generates intermediate products.
All contractor-proposed processes should.

2. The classic waterfall life-cycle of DOD-STD-
2167, with its phase boundaries and milestones,
brings a structured management process to soft-
ware development.

However, the classic waterfall life-cycle is
not the only life-cycle that is structured or
that defines phase boundaries and the milestones
needed to manage software development.

Recommended Solutions

Before looking at specific recommendations,
however, it is valuable to first consider the
needs of the DoD that formed the foundation of
the DOD-STD-2167 process. The DoD needs to:

i. Understand the process, method, and life-
cycle used to develop the deliverable software.

2. Be confident that the process, method, and
life-cycle are cost-effective and will result in
a product that is delivered on time and within

budget.

3. Exercise proper oversight of the development
process (e.g., via reviews of intermediate pro-
ducts) so that it can be reasonably certain that
there will be no major surprises.

4. Be confident that the delivered software
will work as expected and be maintainable.

To solve the preceding problems while en-
suring that the needs of the DoD are met, I re-
commend that the DoD:

i. Rename DOD-STD-2167 from "Defense System
Software Development" to "Defense System Software
Acquisition."

2. While keeping the DID's, modify DOD-STD-2167
from a development process standard into an ac-
quisition process standard.

3. Provide industry with financial incentives
to do good work.

4. Modify the current acquisition process to
account for the differing needs of software and
hardware developers.

And if the DoD considers my recommendations
to be too radical, I propose that DOD-STD-2167 at
least be modified to make it clearly independent
of any required or default software development
process, method, or life-cycle. This could be
accomplished by:

I. Replacing paragraph 4.7 of DOD-STD-2167 with
the following:

"The contractor shall propose in the SDP and
detail in the SSPM a systematic software develop-
ment process, methods and tools that are appro-
priate for the application and implementation
language. Once approved by the contracting
agency, the contractor shall develop all CSCI's
in accordance with these methods and tools."

2. Remove all mention of method-dependent terms
such as PDL and top-down.

3. Deleting paragraphs 4.1.1 and 4.1.2 of DOD-
STD-2167 and replacing paragraph 4.1 with the

following:

"The contractor shall propose in the SDP a
specific, structured, life-cycle model with well-
defined phases that provides adequate intermedi-
ate products and milestones that is appropriate
for the application, implementation language, and
proposed software development process, methods,
and tools. Once approved by the contracting
agency, the contractor shall develop all CSCIs in
accordance with this life-cycle."

4. Remove all requirements governing contractor
internal processes (e.g., informal testing, con-
trois and visibility requirements concerning non-
deliverable items, the use of software develop-
ment libraries, development configurations).

5. Decoupling DOD-STD-2167 from the reviews
mandated by MIL-STD-1521, and adding the follow-
ing paragraph to DOD-STD-2167:

"The contractor shall propose in the SDP
formal and informal reviews based on the phases
of the software development life-cycle model.
Once approved by the contracting agency, all
CSCI's shall be reviewed in accordance with these
proposed reviews."

6. Decoupling the static software hierarchy
from the software development and review process
so that the contractor may first develop the
proper software structure and then decompose it
into a static hierarchy for purposes of SCM.

166 Joint Ada Conference 1987

7. Adding criteria to DOD-HDBK-287 for evalua-
ting the contractor's proposed software develop-
ment process, methods, life-cycle, and reviews.

Conclusion

DOD-STD-2167 is a Tri-services military
standard that establishes and mandates a uniform
software development process for the Mission-
Critical Computer Resource software. It will
therefore be applied to a great many projects and
have a major impact on the way software is deve-
loped in the United States.

The draft of DOD-STD-2167A contains several
improvements that begin to answer some of the
problems mentioned above. As part of the review
cycle for this draft revision, members of the Ada
community identified numerous problems concerning
the compatibility of the DOD-STD-2167 with the
proper use of Ada and modern software development
methods. Some of these problems are specific to
the DOD-STD-2167 process, methods, and life-
cycle, while others are problems with software
process standards in general.

It is the professional opinion of this
author that the goals of the DoD would be best
served if all process, method, and life-cycle
requirements and defaults were deleted from DOD-
STD-2167. In accordance with its own policy, the
DoD should specify WHAT it needs and leave the
contractor free to propose the best application
and implementation language-specific way it
should be developed. Only by promoting innova-
tion and rewarding achievement will the DoD en-
sure the use of the best process, methods, and
life-cycle for the application and implementation
language.

References

i SDSAWG, "Issues and Sub-issues Report,"
October 86

DOD-STD-2167, "Defense System Software
Development," Military Standard,
06/04/85

DOD-STD-2167A, "Defense System Software
Development," Military Standard,
08/15/86-

Firesmith, D.G. and Capt. Gilyeat, C.,
"Resolution of Ada-Related Concerns in
DOD-STD-2167, Revision A," Ada Letters,
July-August, 1986

5 DODD 5000.43, "Acquisition Stream-
lining," DoD Directive, 1985

Firesmith, D. G., "Object-Oriented
Development," presented at the SIGAda
Conference (2/25/86), the National
Conference on Software Methodologies
(3/11/86), and the Ada and the Space
Station Conference (6/3/86).

Booch, Grady, SOFTWARE ENGINEERING WITH
ADA, U.S. Air Force Academy, Benjamin/
Cummings, 1983

Buhr, R.J.A., SYSTEM DESIGN WITH ADA,
Englewood Cliffs, NJ, Prentice-Hall,
1984

A b o u t the A u t h o r

As Software Methodologist for the
Tactical Systems Division of Magnavox
Electronic Systems Company, Mr. Firesmith
supports the Advanced Field Arti]ery
Tactical Data System (AFATDS) Project,
the first major DoD program (ca. 770K
SLOC) to use Object-Oriented Development
(00D) and Ada as implementation language.
He is responsible for the development and
maintenance of Magnavox's OOD methodology.
He is Chairman of the ACM SIGAda Software
Deve|opment Standards and Ada Working
Group (SDSAWG) and is a member of the
CODSIA Software Development Standards
Task Group. Mr. Firesmith has uorked in
software development, quality assurance,
and configuration management. He may be
reached at Magnavox Electronic Systems
Company, Dept. 566, 1313 Production Road,
Fort Wayne, IN 46808, or by telephone at
(219) 42S-a327.

Joint Ada Conference 1987 167

