Ada® COMMUNITY CONCERNS REGARDING DOD-STD-2167
Donald G. Firesmith
Magnavox Electronic Systems Company, Fort. Wayne, Indiana, 46808

1 INTRODUCTION

DEFENSE SYSTEM SOFTWARE DEVELOP-
MENT (DOD-STD-2167) contains requirements for
the development of Mission-Critical Computer Re-
source (MCCR) software and establishes a uniform
software development process which is applicable
throughout the system life-cycle. It was approved
for use by all departments and agencies of the De-
partment of Defense on 4 June 1985 and is therefore
now being applied to a great many Ada projects. Al-
though largely ignored by the Ada Community until
the formation of the SIGAda Software Development
Standards and Ada Working Group (SDSAWG) in
late 1985, DOD-STD-2167 came under increasing
scrutiny as part of the review of the draft Revision
A during the Fall of 1986.

This paper outlines those concerns raised to the SD-
SAWG by members of the Ada Community regard-
ing DOD-STD-2167. Because it represents the input
of many people, probably no one will agree with all
of its contents. Due to space limitations, this paper
only contains the concerns raised and does not in-
clude the arguments that were brought against some
of the concerns during the ensuing debate. It there-
fore does not represent the official position of the
ACM, SIGAda, or even the SDSAWG. For more in-
formation, please contact the author at:

Magnavox Electronic Systems Co.
Dept. 566 10-C-3

1313 Production Road

Fort Wayne, IN 46808

(219) 429-4327

for a copy of the official SDSAWG report.

A copy of DOD-STD-2167 will prove a useful refer-
ence during the remainder of this paper.

®Ada” is a registered trademark of the U.S.Government
(Ada Joint Program Office)

127

2 Ada AS DEFAULT IMPLE-
MENTATION LANGUAGE

DOD-STD-2167 is currently language independent,
and many members of the Ada Community feel that
this should be changed. The following arguments
have been raised in favor of having DOD-STD-2167A
take Ada as the default programming language:

1. It would bring DOD-STD-2167 into compli-
ance with DoD policy. The 10 June 1983 let-
ter from Under Secretary of Defense DeLauer
states “Pending formal coordination and pub-
lication of this directive [DODD 5000.31], I re-
quest that it be implemented as DoD policy...”
Specifically, the directive states that “The Ada
programming language shall become the single,
common, computer language for defense mis-
sion critical applications...” and “... the use of
the Ada programming language is ACTIVELY
encouraged.”

2. Making Ada the default language of the stan-
dard will significantly promote Ada usage.

3. Both Ada and DOD-STD-2167 have been de-
veloped and mandated to apply to the same
class of software applications (i.e., all software
that is part of Mission-Critical Computer Re-
sources). Thus, the vast majority of software
to which DOD-STD-2167 will be applied will
be Ada projects. The Ada-dependent parts of
the standard can be tailored out for non-Ada
projects.

4. A strong precedent already exists for the ex-
tensive use of the Ada language in military
standards. Both “Internet Protocol” (MIL-
STD-1777) and “Transmission Control Proto-
col” (MIL-STD-1778) use a subset of Ada con-
structs common to most high-level languages for
the declaration of data structures, etc.

One person suggested that making Ada the default
language should not be regarded as a denial of lan-
guage independence, but rather a way of ensuring a

more effective way of cornmunicating the concepts of
software development and design.

2.1 DEFAULT CODING STANDARD

The default coding standard in DOD-STD-2167 is
neither consistent with nor based upon Ada. Ac-
cording to DOD-STD-2167, “If the contractor has
not ... received ... approval for |his] internal coding
standards, then the coding standards of Appendix C
shall apply.” According to Appendix C, “Code shall
be written using only the five control constructs il-
lustrated in Figures 5 through 9” and if the “higher
order language does not contain the[se| control con-
structs ..., the contractor shall use [a] precompiler...”

These control constructs in the present default cod-
ing standard do not exactly match those of Ada.
Specifically, Ada’s sequence construct has exceptions
which introduce secondary exits. Ada’s version of
the if-then-else, do-while, do-until, case, se-
lect, and return all permit secondary exits via ex-
ceptions. Additionally, Ada also has the for-loop
and task constructs.

This seems to either prohibit the direct use of Ada
or requires the contractor to use a pre-processor to
transform the present control constructs into valid
Ada. It is not reasonable to require a precompiler to
transform classic constructs into Ada for many rea-
sons, the least of which being that the classic con-
structs do not convey sufficient structural semantics.

The current draft DOD-STD-2167A contains a new
default Ada coding standard (Appendix D). Because
both Ada and DOD-STD-2167 have been developed
and mandated to apply to the same class of soft-
ware applications, the primary default coding stan-
dard (Appendix C) should be based on the Ada pro-
gramming language, and any other coding standards
(whether language independent or specific) should
be treated as special cases.

2.2 DEFINITION OF UNIT
The definition of the term un:t in DOD-STD-2167

resulted in several concerns being raised by members
of the Ada Community.

128

2.2.1 DOD-STD-2167 AND Ada INCON-
SISTENCY

Although both DOD-STD-2167 and ANSI/MIL-
STD-1815A (Ada Programming Language) have
been mandated for the same class of applications,
their definitions of the important term unit differ
in several ways. This inconsistency produces signifi-
cant confusion which is worsened because no natural,
standardized mapping exists from one type of unit
to the other.

According to paragraph 3.23 of DOD-STD-2167, a
unit is the “smallest logical entity specified in the
detailed design which completely describes a single
function in sufficient detail to allow implementing
code to be produced and tested independently of
other Units. Units are the actual physical entities
implemented in the code.” and according to para-
graph 4.2 of DOD-STD-2167, units are the “small-
est logical entities, and the actual physical entities
implemented in the code.” According to ANSI/MIL-
STD-1815A, an Ada programming unit (the primary
type of unit defined in the standard and thus the
type of unit most likely to be confused with the
DOD-STD-2167 unit) is either a subprogram, pack-
age, generic unit, or task unit.

The following are examples of various problems en-
countered when trying to map DOD-STD-2167 units
into Ada programming units:

1. Although packages are the main structural en-
tities in Ada programs, a package can not be
a DOD-STD-2167 unit because it is not the
“smallest logical entity specified in the detailed
design which completely describes a single func-
tion” (see 3.23). It is not the smallest logical en-
tity because it may well contain subprograms,
etc. It should not be the smallest entity speci-
fied in the detailed design because the detailed
design should usually document the Ada pro-
gramming units contained within the package.
It also is probably not associated with a sin-
gle function. For example, a package contain-
ing five subprograms would probably perform
five different functions while a package contain-
ing only type definitions performs no functions
as such.

2. However, the “smallest logical entity” which one
would want to individually document in the de-

tailed design might be an entire Ada package
because:

(a) OF coupling/cohesion constraints and the
sharing of data types, etc.

(b) The package may be extracted as a “black
box” from a reuse library, where no infor-
mation about its internal structure is avail-
able.

3. On the other hand, any subprograms contained
in a package would not be DOD-STD-2167 units
since they are not “produced and tested inde-
pendently of other units.”

4. Although some have suggested that Ada spec-
ifications and bodies be interpreted as DOD-
STD-2167 units because they are the “smallest
logical entities”, other problems arise. If a sub-
program specification is a compilation unit, the
corresponding body cannot be compiled with-
out it. Thus, the subprogram body can not
be “produced and tested independently” of the
specification.

5. It is important that the DOD-STD-2167 defi-
nition of unit be such that the placing of both
specification and body in the same compilation
unit is neither mandated nor disallowed.

6. It is unclear how the IS SEPARATE clause is im-
pacted by the present DOD-STD-2167 defini-

tion of unit.

The problems with the DOD-STD-2167 definition
that make it difficult to map it into Ada program-
ming units thus seem to fall into the following areas:

1. The mere use of the same word to describe both
concepts adds unnecessary confusion because of
the temptation to map DOD-STD-2167 units
directly into Ada programming (or compilation)
units. As it now stands, this problem will only
be the cause of endless non-productive argu-
ments, across a broad range of projects, as to
what a DOD-STD-2167 unit is in terms of soft-
ware. That the government will be forced to
pay for this needless confusion is intolerable.

2. Any design enitity small enough to be “the
smallest logical entity specified in the detailed
design” is likely to be too small to be “produced
and tested independently”.

129

3. Requiring a unit to be restricted to “a single
function” ignores units containing only type in-
formation or units (e.g., Ada packages) for col-
lecting related operations (i.e., functions and
procedures) and hiding the operations on pri-
vate types.

4. Note that the above mentioned problems
also exist for languages other than Ada.

Perhaps the best way to deal with the problem of
confusion between DOD-STD-2167 units and Ada
units would be to change DOD-STD-2167 terminol-
ogy. If Lower-Level Computer Software Component
(LLCSC) were renamed Mid-Level Computer Soft-
ware Component (MLCSC) and DOD-STD-2167
Unit were renamed Lower-Level Computer Software
Component, then the DOD-STD-2167 static hierar-
chy would be CSCI, TLCSC, MLCSC, and LLCSC.
This would make the static hierarchy terms more
mutually consistent and avoid confusion with the
Ada unit.

2.2.2 DATA UNITS

According to paragraph 3.23 of DOD-STD-2167, a
unit is the “smallest logical entity ... which com-
pletely describes a single function....” This definition
does not adequately address data units, because they
do not perform “a single function”. DOD-STD-2167
thus emphasizes procedural units (as well as CSClIs,
TLCSCs, and LLCSCs) although data units are of-
ten as important or more so.

There is a tendency in many modern systems to em-
bed the requirements and/or control in the data in-
stead of in the executable code. The software is often
so flexible and general that it solves a very large class
of problems. To be able to apply such programs to a
particular instance, the data are used to dynamically
(i.e., at run time) conform/configure the actions of
the program. For example, in many expert systems,
the inference engine per se is almost trivial, and it is
the data in the knowledge base and inference rules
that embodies the system requirements and control.
Another example is a compiler, which is so general
that the grammar, semantics, and code generators
are selected dynamically by reading the appropriate
tables off the disk files. A third example would be
the case where the files of a DBMS are key CSCs

or CSCls. In order to produce and verify such sys-
tems for specific uses, it is necessary to design, doc-
ument, integrate, configuration manage, and verify
these data units (e.g., files) in order to ensure that
the system-level requirements have been adequately
allocated and satisfied. Yet the development, test-
ing, and documentation of the content of data units
is not adequately described in DOD-STD-2167, but
could be added to sections 5.4 and 5.5.

In Ada, one standard use of packages (an Ada pro-
gramming unit) is to store type and object (i.e.,
data) definitions. The definition of DOD-STD-2167
should be expanded to cover such units.

The term “Computer PROGRAM Component” has
been replaced by “Computer SOFTWARE Compo-
nent” due to the recognition that the term “soft-
ware” is more inclusive than “program” (note: this
change has also not yet been incorporated in MIL-
STD-483 and MIL-STD-490). The definition of
“computer data definition” (3.5) includes the value,
or content, of the data elements, perhaps defined
apart from the representation/format of those items
(as embodied in the code). Yet the data aspects
or generality of the definitions of “computer soft-
ware” (3.6), “computer software component” (3.7),
and “computer software configuration item” (3.8)
are not carried over into the definition of unit (3.23).

The Software Requirements Specification DID does
not adequately address data units, either as CSCI-
internal design entities or as CSCl-external entities
with which the CSCI must interface.

DOD-STD-2167 requires that all units be tested
(5.4.1.2 and 5.4.1.6). Data units, however, are not
tested in the ordinary sense of the word, but rather
verified.

In the case of data units, different methods and
tool sets may be required (i.e., not simple compilers
and linkers). In particular, the specific references
to “source code and object code” may not apply to
units of data.

Note that this concern about data units ap-
plies to all languages, not just Ada.

The definition of unit should be generalized to the
point that units may contain no data, contain only
data, or any mixture of both.

130

2.2.3 LOGICAL VS. PHYSICAL UNITS

The distinction between logical and physical units
is ignored in DOD-STD-2167. There is no guaran-
tee that the logical design will (or should) map one-
to-one into the physical design. In fact, the map-
ping from the smallest logical design entities into
the physical program units is strongly methodology-
and language-dependent.

The static hierarchy is a logical structure. Because
the entire static hierarchy is based on the “composed
of” relationship and because the higher levels of the
hierarchy (e.g., TLCSC and LLCSC) are logical, the
concept of unit in DOD-STD-2167 should also be

logical only.

When code is manually optimized, one method of
reducing overhead is to map the logical design into
a physical (i.e., code) design. For example, logically
concurrent units may be serialized and called as pro-
cedures. Logical units may also be inserted “inline”
to eliminate subroutine calls. Another instance in
which the logical and physical designs are not iden-
tical is when a unit is repeated in separate overlays
(i.e., one logical copy maps into multiple physical
copies). Thus, the final, physical units may not be
the same as the originally designed logical units.

It appears that DOD-STD-2167 requires one to doc-
ument the logical units in the Software Detailed
Design Document and Software Development Files
(5.3.1.2, 5.3.1.8, 5.3.2.3) and to update the logi-
cal design to ensure compatibility with the physical
design (5.4.1.9) only in the case where the incom-
patibility is due to unit testing. There appears to
be no requirement to document the physical design
when it differs from the logical design for other rea-
sons, nor does there appear to be any requirement to
document the mapping between logical and physical
units.

By forcing the logical and physical designs to be
identical as documented (i.e., by documenting only
the as-built design), one loses the original design and
the rationale behind it. Just as having the individ-
ual pieces of a jig-saw puzzle does not immediately
show you the entire picture, the listings of the as-
built software (a part of the Software Product Spec-
ification) do not clearly show the physical software
architecture. The as-built design therefore may not
be adequately documented.

Note that this concern is language indepen-
dent, and in fact, may be even more important when
using lower-level languages.

2.2.4 UNIT TESTING

DOD-STD-2167 currently has an inappropriate em-
phasis on unit-level testing. In light of the high
modularity and low unit-level complexity of well-
designed Ada software, a requirement to individually
test each Ada programming unit seems inappropri-
ate and wasteful. For example, a relatively mono-
lithic Fortran unit may correspond to (i.e., have the
same function, size, and complexity as) several Ada
programming units. It may not be cost effective to
individually unit-test all (or even most) Ada pro-
gramming units if they consist of little more than
a short sequence of calls and associated exception
handling. Thus for example, one may wish to unit
test an entire package rather than individually test
each procedure and function nested within it.

The appropriate level at which to commence unit-
level testing is language, method, and design depen-
dent.

Although DOD-STD-2167 does not define “unit test-
ing”, it seems to mean the testing of individual
“2167” units (5.4.1.2, 5.4.1.6) rather than either the
testing of individual Ada programming units or unit-
testing in the classic sense. This is consistent with
the definition of unit (3.23) which implies that each
unit may be “tested independently of other Units.”
It is thus unclear exactly what DOD-STD-2167 re-
quires as far as unit testing is concerned. Even if
the intent is to allow the contractor to determine
the appropriate level at which to commence unit-
level testing, there is a concern that the program
office may not take such an enlightened view.

According to paragraph 5.2.1.6 (a) of DOD-STD-
2167 Revision A:

“A Unit test shall test an individual Unit
or, subject to contracting agency disap-
proval, a logically related group of Units.”

Although the above modification allows the contrac-
tor some latitude in determining the level at which to
commence unit testing, it is still too restrictive. The
contracting agency should disapprove at the level of
the SDP or SSPM that documents the contractor’s

131

unit test methods - NOT on an individual test-by-
test basis. Unit testing is supposed to be informal,
and allowing contracting agency disapproval of unit
testing on a case-by-case basis is an improper “how-
to” constraint for the following reasons:

1. Unit testing is a contractor-internal activity and
the contractor should be allowed to manage this
without contracting agency interference. This
violates the DoD Acquisition Streamlining di-
rective.

2. DOD-STD-2167A allows the contractor this
control when Software Development Files
(SDFs) are concerned. No contracting agency
approval is required to use SDFs to document
multiple units.

3. On large programs, units tend to be designed,
coded, reviewed, and tested in logical groups.
Previously negotiated contract costs may well
be based on the contractor’s past experience
with group testing of units.

4. DOD-STD-2167 is unclear as to whether each
individual unit is required to have its own unit
test plan, procedure, and report or whether a
generic plan and procedure is allowed.

5. The requirement to prepare unit test procedures
is not cost-effective for most unit-testing. Test
cases are usually sufficient. For example, on one
large Ada project (AFATDS), it was determined
that unit testing was not cost-effective if the
unit had a McCabe’s Complexity of 3 or less.
Inspection proved quite sufficient.

6. Paragraph 5.3.1.9 implies isolation-testing of all
units.

7. Timing and sizing assessments are usually

meaningless at the unit level.

Part of this concern may result from the following
facts:

1. Unit testing is never defined in DOD-STD-2167.

2. The definition of unit in DOD-STD-2167 may
well not be the same as that which is meant by
unit in classic unit testing.

The contractor can NO'T avoid unit testing by spec-
ifying in the Software Requirements Specification
(10.2.6.1.d) that the unit test. method may be inspec-
tion. Inspection is one of the *qualification methods
used to show that the requirements of a CSCI have
been satisfied”. This is not the purpose of unit test-
ing and therefore irrelevant to the issue of unit test-
ing.

The argument that the Software Test Plan specifies
the type of unit testing to be performed does not
answer this concern for the following two reasons:

1. Informal testing (e.g., unit testing) is beyond
the scope of the Software Test Plan (STP).

2. The contractor can not arbitrarily group design
entities for unit testing without identifying that
collection as a DOD-STD-2167 unit or, accord-
ing to 5.2.1.6 (a) of DOD-STD-2167 Revision
A, being “subject to contracting agency disap-
proval”.

The question is not whether the extensive indepen-
dent testing of each unit mandated or implied by
DOD-STD-2167 is the best current method of low-
level testing , but rather whether any single method
should be mandated or made the default (i.e., pre-
ferred). Even the best current method is subject to
obsolescence in a rapidly evolving industry. By sin-
gling out any specific method in the standard, one
is ensuring that the standard will become obsolete
sooner than is necessary. Because the standard can
not be easily and rapidly updated, this will have a
major negative impact on the development of DoD
software.

According to the forward of DOD-STD-2167 Revi-
sion A, “The intent of this standard is to permit any
systematic, well-documented, proven software devel-
opment methodology.”

Informal testing must be controlled by the contrac-
tor in order to minimize cost and schedule risk. The
contracting agency should only be concerned with
formal testing against specifications. The require-
ment for independent testing creates improper “how-
to-manage” constraints on the contractor in viola-
tion of the DoD Acquisition Streamlining directive.

While the contracting agency should stipulate the
required reliability of the delivered software, it is the

132

contractor’s, and not the government’s, responsibil-
ity to define how software should be tested.

2.2.5 NESTED UNITS

There is currently no requirement to document sub-
units nested within a DOD-STD-2167 unit. In spite
of the problems listed above in paragraph 2.2.1 of
this paper, some contractors choose to implement
and document an Ada package containing many pro-
cedures, functions, tasks, and other packages as a
single DOD-STD-2167 unit. Thus one could ar-
gue that, by the definition in DOD-STD-2167, the
“push” and “pop” routines in a stack package are in
reality nested subunits. In addition, it is frequently
useful during coding to introduce nested subunits
that logically encapsulate some functionality unique
to the unit (e.g., to code a PDL statement as a
nested procedure). In this case, the fact that the
unit contains nested (Ada) subunits may not be doc-
umented.

Although some have stated that nesting is a poor
practice that should be prohibited, others feel that
it is a legitimate way of implementing information
hiding. Because it is a legal part of the Ada lan-
guage and not prohibited by DOD-STD-2167, the
standard should be able to handle it. Use of the
Ada IS SEPARATE clause also invalidates many of
the arguments raised against nesting.

Note that this concern also applies to other
languages (e.g., Pascal, PL1, JOVIAL) that allow
the nesting of subunits.

2.2.6 VISIBILITY BETWEEN UNITS

There is currently no requirement to document
the visibility relationship between DOD-STD-2167
units.

If a contractor chooses to consider the nested con-
tents (e.g., subfunctions and tasks) of a package to
be separate DOD-STD-2167 units, the visibility and
scope relationships between these units are not re-
quired to be documented and would therefore not be
obvious to maintenance personnel.

It would be useful to have a requirement that could,
for example in Ada, be satisfied by including in the
Software Detailed Design Document the WITH and
USE clauses as part of the PDL (something that

does not appear to be required now). This critical
design information should be included in the SDDD
as well as in the source code.

Note that this concern also applies to other lan-
guages that allow the nesting of subunits (e.g.,
PL/I) although the problem is more critical with
Ada. The need to document and limit scope and
visibility should be addressed for all languages.

Part of the confusion is due to the differences
between DOD-STD-2167 units and programming
units.

2.2.7 LLCSC AND UNIT DISTINCTION

The distinction between LLCSC and Unit needs clar-
ification. There is currently no requirement for a
contractor to define or document his criteria for
determining that a design entity is a unit rather
than a Lower-Level Computer Software Component
(LLCSC). There is also no clear guide in determin-
ing how low to take the design since DOD-STD-2167
units may not map clearly into language-specific pro-
gramming units. Although paragraph 4.2.1 of DOD-
STD-2167 states that Appendix XVII of MIL-STD-
483 gives guidelines for selecting CSCIs, TLCSCs,
LLCSCs, and Units, the guidelines it contains are
primarily intended for CSCls and do not contain
much that is useful for determining CSCs and Units.
As a reductio ad absurdum example, there appears to
be nothing in DOD-STD-2167 or the DIDs to pre-
vent a contractor from circumventing much of the
standard by arbitrarily having each TLCSC con-
sist of a single LLCSC consisting of a single unit.
This problem of “deciding when to stop” is inherent
throughout the development process.

The size and nature of LLCSCs and units are both
application, software development method, and lan-
guage dependent.

Note that unlike the language-independent coding
standard, the new proposed Ada coding standard
(Appendix D) of DOD-STD-2167 does not have a
size restriction on units.

2.3 FORMAT EXAMPLES IN THE
DIDS

None of the formats specified in the DIDs show how
to use Ada to present information and there are no

133

examples of how to optimally present such informa-
tion. This is inconvenient at best because Ada will
be the primary language for future software develop-
ment. Some contractors are currently experiencing
great difficulty applying the DIDs when Ada is used
as either the PDL or implementation language.

Ada is a design, as well as an implementa-
tion, language. It is therefore reasonable to use
Ada to present the design information required by
the Software Detailed Design Document and possi-
bly the Software Top Level Design Document. The
Data Item Descriptions (DIDs) should encourage the
presentation of design information in the form of ei-
ther Ada PDL or full Ada.

Ada examples should be used either in addition to,
or in place of, existing examples (e.g., tables). Ben-
efits of this would be to:

1. Bring DOD-STD-2167 into compliance with
DoD policy. The letter of June 10, 1983 from
Under Secretary of Defense DeLauer states in
part “... use of the Ada programming language
is actively encouraged.”

2. Decrease errors by:

(a) Increasing the rigor of the information pre-
sented so that it is less subject to interpre-
tation.

(b) Enabling automatic verification of syntax
and some semantic information using an
Ada compiler.

(c) Promoting consistency and uniformity be-
tween code and the documentation.

(d) Reduce the effort to produce code and doc-
umentation.

3. Improve the understandability, readability, and
maintainability of the code and documentation.

The DIDs inhibit the automation of documentation
production by suggesting formats that do not easily
map into the way relevant information is stored at
the code level.

As mentioned previously, a strong precedent already
exists for the extensive use of the Ada language
in military standards. Both “Internet Protocol”
(MIL-STD-1777) and “Transmission Control Proto-
col” (MIL-STD-1778) use a subset of Ada constructs

common to most high-level languages to declare data
structures, etc.

Because Ada will be used on all Tuture DoD com-
puter systems, it will be advantageous to define all
fields and messages in the interface control and de-
sign specifications as Ada data type specifications.
This would allow the Ada programs in the inter-
facing systems to directly with and reference the
interface data definitions into the code and thus
be assured that the expected interface data exactly
matches the ICD/ISD specification. When the inter-
face data definitions are changed, the Ada compiler
and linker will automatically declare “obsolete” all
compilation units that reference the changed data
items until the programs are modified (if necessary)
and recompiled. This greatly enhances the configu-
ration control of the interface specifications. Com-
piling these portions of the interface specifications
would also be a significant validation of their correct-
ness. When interfacing to hardware devices or be-
tween different target processors whose compilers al-
locate the underlying bit representations differently,
Ada representation specifications should be included
as part of the data definitions.

This concern should also be addressed in “Defense
System Software Development Handbook” (DOD-
HDBK-287).

2.4 USE OF ADA IDENTIFIERS

DOD-STD-2167 does not adequately support identi-
fier consistency. There appears to be no requirement
that the same entity always have the same identifier,
both in the documentation and code. The use of
consistent Ada identifiers would enhance the trace-
ability of entities from requirements through design
into the resulting code.

3 PROCESS VS. PRODUCT

STANDARD

According to the Foreword of DOD-STD-2167, it is
a process standard that “establishes a uniform soft-
ware development process”. By mandating a stan-
dard life-cycle and activities based upon the phases
of this life-cycle, DOD-STD-2167 contains a signifi-
cant number of “how to” requirements.

134

Process standards must, by definition, contain “how
to” restrictions and inhibit innovation. It is not
proper for the government to mandate how the con-
tractor is Lo develop software. Software development,
methods that significantly deviate from the defined
process may not even be proposed, regardless of their
technical merit, because of the perceived political
and economic risks to the contractor that proposes
anything different than expected. In a rapidly evolv-
ing industry in which advances in software engineer-
ing come almost daily and in which major improve-
ments are necessary in order to solve the softwarecri-
sis, innovation is necessary and should be promoted.
In fact, many Requests for Proposals (RFPs) state
that an innovative methodology is favorably consid-
ered in the contractor selection criteria.

By its very nature, most of the DoD (certain ad-
vanced R&D efforts excluded) will always be sev-
eral years behind industry, and even further be-
hind the research community. Thus it is vital that
the contractor be encouraged to apply the methods
most appropriate for producing the product and as-
sociated documentation that the DoD needs at the
least possible cost, while still providing the govern-
ment adequate oversight into the contractor’s devel-
opment effort.

Just as contractor personnel must always keep up
with a rapidly evolving technology if they are to re-
main competitive, government personnel must do so
also. One hardly expects government personnel fa-
miliar only with vacuum tube technology to manage
and maintain modern computer systems, and what
applies to hardware applies equally to software.

If the contractor does not have the expertise to pro-
pose and implement a software development method
(either the current default of DOD-STD-2167 or
a more modern alternative), then the contractor
should not be developing software. If the govern-
ment is not qualified to evaluate contractor proposed
processes, life-cycles, and methods, they should hire
an independent expert. After all, this is one of the
standard duties of IV&V contractors.

The classic software development process mandated
by DOD-STD-2167 has not been proven to work well
on large projects. It has the following well-known
disadvantages:

1. You never have a demonstrably useful product
(i.e., one that validates the requirements and

design) until the end of the development life-
cycle (i.e., near the end of a release or project).
This is one of the incentives to rush coding with-
out a methodology or adequate preparation.

2. On large projécts, the government monitoring
personnel are likely to change, leading to differ-
ent “hot buttons” and large changes in require-
ments.

3. On large projects, turnover of contractor per-
sonnel leads to a loss of why certain key deci-
sions were made.

Any advantages that the government would gain
from maintaining a common, single development
process, lifecycle, or set of methods throughout a
variety of software development projects (e.g., ease
of training) would be outweighed by the inhibition
of innovation that would result.

The ability to propose an alternate software devel-
opment process, life-cycle model, or methods in the
Software Development Plan (SDP) and thus ignore
all or part of DOD-STD-2167 is an insufficient loop-
hole since contractor’s may well feel pressured to
comply with the standard in order to win the con-
tract.

A default software development process and life-
cycle model is NOT necessary because DOD-STD-
2167 (5.1.1.3.c.1) already requires the contractor’s
proposed software development methods and tech-
niques to be documented in the Software Standards
and Procedures Manual (10.2.5.1). Although not
mentioned in DOD-STD-2167, the exact same re-
quirement is also REDUNDANTLY stated in the
Software Development Plan (10.2.7.1.1).

It is clearly the contractor’s, and not the govern-
ment’s, responsibility to define how software should
be developed and what life-cycle and software devel-
opment methods should be used. When a contractor
does not propose any process, life-cycle, or methods,
the SSMP and SDP should be rejected rather than
mandating a single, standard process and life-cycle
that may well not be appropriate.

DOD-STD-2167 is very much a “how-to-develop”
process standard, and is therefore in gross con-
flict with DoD acquisition streamlining directives.
Specifically, the first sentence of the second para-
graph of DODD 5000.43, “Acquisition Streamlin-
ing”, states:

135

“As a first priority, this Directive estab-
lishes policy for streamlining solicitation
and contract requirements by: (a) Spec-
ifying contract requirements in terms of
the results desired, rather than “how-to-
design” or “how-to-manage”....”

All requirements regarding the performance and
documentation of contractor-internal activities (e.g.,
informal testing) are improper “how-to” constraints
on the contractor and may well increase acquisi-
tion costs and schedules without justifiable benefit.
It is time that such “how-to-design” and “how-to-
manage” requirements are deleted from DOD-STD-
2167.

One should note that often the “process” require-
ments found in “Activities” sections are really prod-
uct requirements and are nothing more or less than
the REDUNDANT reiteration of the contents of the
associated DID. Thus, we have the same product re-
quirement redundantly mandated on the customer
three (!) times: once in the activities section, once
in the product section, and once in the DID. This
creates an unnecessary CM problem for the govern-
ment and an unnecessary QA problem for the con-
tractor. These redundant parts of DOD-STD-2167
should be replaced with references to the applicable
DID.

While it may be reasonable for the government to
adopt a process standard to dictate how the govern-
ment is to PROCURE software, it is something quite
different to adopt a process standard to dictate how
the contractor is to DEVELOP software.

The question is not whether the software develop-
ment process, life-cycle, and methods mandated by
DOD-STD-2167 are the best currently available, but
rather whether any single approach should be man-
dated or made the default (i.e., preferred). Even the
best current approach is subject to obsolescence in
a rapidly evolving industry.

By singling out any specific process, life-cycle, or set
of methods in the standard, one is ensuring that the
standard will become obsolete sooner than is neces-
sary. Because the standard can not be easily and
rapidly updated, this will have a major negative im-
pact on the development of DoD software.

According to the forward of DOD-STD-2167 Revi-
sion A, “The intent of this standard is to permit any

systematic, well-documented, proven software devel-
opment methodology.”

3.1 “WATERFALL” LIFE-CYCLE

DOD-STD-2167 restricts the contractor to software
development methods consistent with the classic
“waterfall” life-cycle.

According to DOD-STD-2167 (4.1), “The contrac-
tor shall implement a software development cycle
that includes the following six phases...”. By bas-
ing DOD-STD-2167 upon a single life-cycle (i.e., the
classical “waterfall” model), innovation and methods
based upon alternative life-cycles are prohibited.

Many new life-cycle models have been introduced
during the last five years and others will continually
be introduced as software engineering evolves. No-
table examples of other methods having life-cycles
prohibited by DOD-STD-2167 include rapid proto-
typing methods, recursive object-oriented develop-
ment methods, and specific life-cycle models such as
Boehm’s spiral life-cycle.

Many new life-cycle models are fundamentally differ-
ent from the classic waterfall life-cycle. They can not
be mapped into the DOD-STD-2167 life-cycle due
to close binding of specific products developed and
reviewed during the individual phases of the DOD-

STD-2167 life-cycle.

Requiring conformity to a single standard life-cycle
model is an improper “how to” restriction placed on

the contractor.

Although DOD-STD-2167 allows incremental re-
views, the linear nature of the classical life-cycle with
its formal reviews that act as bottlenecks between
phases (4.1.2) prohibits the use of recursive “design
a little, code a little, test a little® methods. Thus for
example, although DOD-STD-2167 permits a small
number of incremental Preliminary Design Reviews
(PDRs) and Critical Design Reviews (CDRs) per
CSCI per build or release, it does not permit meth-
ods such as Object-Oriented Design in which small
amounts of code (e.g., approximately 1IKLOC) are
recursively designed, coded, and tested during each
pass through the method. On large projects (e.g.,
more than 100KLOC), it is clearly impractical to
hold several hundred traditional PDRs and CDRs.
The bottleneck nature of the formal reviews also pro-
hibits one from coding and testing as one goes — an

136

important aspect of such methods that permits one
to incrementally validate the evolving design.

3.2 STATIC HIERARCHY

The static software hierarchy of DOD-STD-2167
does not map well into the network structure of well-
designed Ada software. There is no clear method-
independent way of defining the terms of the static
hierarchy of DOD-STD-2167 in terms of the struc-
turing concepts of Ada (e.g., packages, nesting, with-
ing).

The static software hierarchy is tied too closely with
the software development process, prohibiting one
from first developing the proper Ada structure and
only then decomposing it into a static hierarchy for
purposes of Software Configuration Management.

The static software hierarchy of DOD-STD-2167 im-
plies a hierarchial-decomposition software develop-
ment method, thus inhibiting the use of more mod-
ern non-decomposition methods based on a recursive
“design a little, code a little, test a little” approach.

The software hierarchy of DOD-STD-2167 impacts
the order and scope of integration and testing. The
order and scope of integration and testing, however,
should be method-, language-, and architecture-
dependent.

The static structure can inhibit software reusability,
and it often conflicts with the use of generics in Ada.

It is not at all clear what the static structure repre-
sents if not the structure of the implemented code.
Since CSCIs are composed of TLCSCs which are
composed of LLCSCs which are composed of Units,
it only seems reasonable that this structure, which
is based upon various levels of software groupings,
should represent the software architecture in some
natural way. It does not make sense to say that
the code “resides” only at the unit level and there-
fore the static structure has no relationship to the
software structure. Otherwise, the static structure
is highly misleading and the software design docu-
ments should not be based on it.

The current static structure is valuable for Software
Configuration Management purposes, and NOT for
purposes of design in an engineering sense. Yet the
whole design process of DOD-STD-2167 is based on
the static hierarchy.

3.3 “TOP-DOWN?” DEFAULT

The choice of “top-down” as the single default de-
velopment approach implies that it is the preferred
approach for all software development activities.

A clear distinction should be made between the
use of the term “top-down” to describe a contrac-
tor’s software development method and the use of
the term to describe documentation formating (e.g.,
document structuring and presentation).

DOD-STD-2167 currently states (4.8) that “The
contractor shall use a top-down approach to design,
code, integrate, and test all CSCI’s unless specific
alternate methodologies have been proposed ... and
received contracting agency approval.” This require-
ment is therefore an improper “how to” restriction
on the contractor.

The appropriateness of “top-down”, “bottom-up”,
“outside-in”, “inside-out”, or “holistic” approaches
is method- and activity-dependent.

Examples of situations where other approaches ap-
pear preferable include:

1. Extensivereuse often implies a “bottom-up” ap-
proach to design and test.

2. Use of commercial software implies “bottom-
up” testing.

3. The compilation order restrictions of Ada en-
courages a “bottom-up” approach to CSC test-

ing.

4. The development of critical software implies
“bottom-up” design and testing.

5. The development of test suites requires at least
a partial “bottom-up” approach.

The application of the “top-down” approach to ac-
tivities other than design (e.g., code, integration,
and testing) is not a recognized, proven approach.

Software is almost guaranteed not to be reusable if
one uses a pure top-down design method because
one of the major goals of top-down design methods
are to produce units precisely suited to the specific
problem being solved. Thus, the requiring of top-
down is counterproductive to the goal of producing
reusable software.

137

Even DOD-STD-2167 is not consistent with regard
to its own requirement that the “contractor shall
use a top-down approach to ... test all CSCPs”. It
specifically requires an approach to test and inte-
gration that is absolutely, vertically bottom-up as is
clearly demonstrated by paragraph 4.1 which lists
the last three sequential phases of the DOD-STD-
2167 software development life-cycle as Coding and
Unit Testing, Computer Software Component Inte-
gration and Testing, and CSCI Testing.

Because no single approach is clearly optimal for all
life-cycle activities, choosing “top-down” as the sin-
gle, default (and therefore preferred) approach ap-
pears counterproductive.

The requirement of “top-down” as a default ap-
proach is an improper “how-to” restriction on the
contractor who may feel pressured to provide the
expected, “preferred” approach in order to win the
contract.

3.4 PDL REQUIREMENT

The choice of a Program Design Language (PDL) as
the single required detailed design tool and default
top-level design tool causes various problems.

3.4.1 “HOW TO” CONSTRAINT

The choice of PDL as the single default top-level
design technique and the required detailed design
technique is an improper “how to” constraint.

DOD-STD-2167 (5.2.1.4) states that “In establish-
ing and defining the top-level and, as applicable,
lower-level design of each CSCI, the contractor shall
use a program design language or some other top-
level design description tool or methodology.”

DOD-STD-2167 (5.3.1.5) states that “In the devel-
opment of the detailed design for each CSCI, the
contractor shall employ a program design language.”

The choice of any single design technique as default
or requirement inhibits contractor innovation and
will result in the proposal and use of technically infe-
rior tools due to the natural tendency of contractors
to develop designs in the manner expected by the
government. The contractor should be free to choose
the best detailed design description technique for the
language and application. This is an improper “how

1o” constraint.

3.4.2 PDL INAPPROPRIATNESS

The use of a PDL as a top-level design description
technique is probably inappropriate. Graphics, such
as those of Grady Booch and R. J. A. Buhr, are
clearly superior in terms of understandability when
it comes to presenting the top-level architectural de-
sign in terms of software units and their relation-
ships. The use of a higher-level notation should be
explicitly encouraged.

The early use of PDL also tends to force the de-
signer to prematurely think in terms of execution
sequences when all of the entities may not yet be
fully understood.

3.4.3 PDL PURPOSE CHANGING

Due to the high modularity and low complexity of
well-designed Ada software, the lack of distinction
between Ada PDL and Ada code, and the design as-
pects of the Ada specification, the nature and pur-
pose of PDL is changing in the Ada community.
PDL is not needed to document the logic of the body
of many units because of their trivial size and com-
plexity. Although PDL may prove useful in the au-
tomatic generation of the Software Detailed Design
Document, it is inappropriate to imply that it, or
any single detailed design method or tool, is to be
preferred under all circumstances. This inhibits in-
novation and is an improper “how to” constraint on
the contractor.

Graphical methods (e.g., the use of decision tables
or finite state transition diagrams) are probably bet-
ter than PDL for specifying the design of logically
complex units.

3.5 FUNCTIONAL ORIENTATION

DOD-STD-2167 seems to imply a functional decom-
position method of software development.

38.5.1 FUNCTIONAL SRS

The format of the Software Requirements Specifica-
tion (SRS) seems to imply a functional decomposi-
tion method of software requirements analysis.

138

Many real-time systems are data driven or process-
ing sequence driven. Yet DOD-STD-2167 is oriented
almost. exclusively towards functionally driven sys-
tems. Data structure and the sequencing of opera-
tions are inadequately identified and tracked.

The format of the Software Requirements Specifi-
cation (SRS) is based upon, and implies, a func-
tional decomposition method of software require-
ments analysis. This causes the following problems:

1. Organizing the requirements along object or
hardware, rather than functional, lines is not
permitted.

2. If one uses an object-oriented requirements
analysis method, one must re-sort the require-
ments from object into functional order. This
results in excess work and a SRS whose struc-
ture does not map well into the design.

3. If one uses a functional decomposition require-
ments analysis method and an object-oriented
design method, one encounters method incom-
patibility problems. One must somehow ig-
nore the functional decomposition design im-
plied by the functional requirement decompo-
sition, something that is psychologically very
difficult to do in practice.

The increased readability of a document due to its
having a standard format probably does not justify
the use of a standard format if the format is inap-
propriate and adversely impacts the quality of the
software. Besides, the table of contents should al-
ways allow one to find the relevant portions of the
document, and the completeness of the document
can always be verified by means of a cross-reference
matrix that maps the contractor’s format to the con-
tent requirements of the DID.

8.5.2 FUNCTIONAL STATIC HIERAR-
CHY

The entities of the static hierarchy are oriented to-
wards functional decomposition software develop-
ment methods.

According to paragraph 3.7 of DOD-STD-2167, a
Computer Software Component is a “Functional or

logically distinct part of a computer software con-
figuration item.”! Although the above wording does
allow for the decomposition of CSCIs into TLCSCs
and TLCSCs into LLCSCs using other than func-
tional methods, the implication of both the word
“functional” and its order (i.e., functional precedes
logically) is that functional methods are the pre-
ferred default. This represents an improper, if weak,
“how to” constraint on the contractor.

According to paragraph 3.19 of DOD-STD-2167, the
definition of “Modular” implies that the software “is
organized into limited aggregates ... that perform
identifiable functions.” This represents another im-
proper “how to” constraint on the contractor.

According to paragraph 3.27 of DOD-STD-2167, a
unit “... describes a single function ...” and accord-
ing to paragraph 5.3.1.2 of DOD-STD-2167, “Each
Unit shall perform a single function.” The above re-
quirements imply a functional decomposition design
method. They ignore the existence of data units and
do not allow one to have abstract data type packages
(which perform multiple functions) as units. This is
a strong improper “how to” constraint on the con-
tractor.

According to paragraph 4.2.1 of DOD-STD-2167,
“the partitioning of the CSCI into TLCSCs, LLC-
SCs, and Units may be based on functional require-
ments, data flow ...” Although the wording does al-
low for the decomposition of CSCls into TLCSCs
and TLCSCs into LLCSCs using other than func-
tional methods, the implication of both the word
“functional” and its order (i.e., functional is men-
tioned first) is that functional methods are the pre-
ferred default. This represents an improper, if weak,
“how to” constraint on the contractor.

According to paragraph 5.2.1.2 (b) of DOD-STD-
2167, “In defining each TLCSC the contractor
shall identify ... 'the function allocated to the
TLCSC”. This implies a functional decomposition
design method and ignores the existence of data
TLCSCs such as knowledge bases in Al applications.
Requirements, rather than functions, should be al-
located to TLCSCs. This is a strong improper “how
to” constraint on the contractor.

The implication of “functional decomposition” as
the default approach is an improper “how-to” re-
striction on the contractor who may feel pressured

!Emphasis added here and below by the author.

139

to provide the expected, “preferred” approach in or-
der to win the contract.

The question is not. whether “functional decomposi-
tion” is the best current method, but rather whether
any single method should be mandated or implied to
be the default (i.e., preferred). Even the best cur-
rent method is subject to obsolescence in a rapidly
evolving industry. By singling out a specific method
in the standard, one is ensuring that the standard
will become obsolete sooner than is necessary. Be-
cause the standard can not be easily and rapidly
updated, this will have a major negative impact on
the development of DoD software.

The contractor should be free to:

1. Modularize the software along other than func-
tional lines.

2. Determine the appropri-
ate decomposition method for the application
and software development method.

3. Determine the appropriate method and criteria
for identifying TLCSCs, LLCSCs, and Units.

Because no single type of software development
method is clearly optimal for all applications, choos-
ing functional decomposition as the single implied
default (and therefore preferred approach) appears
counterproductive.

3.6 DOD ACQUISITION PROCESS

DOD-STD-2167 is based upon a DoD acquisition
process inappropriate for the development of soft-
ware using modern methods.

The basic process mandated by DOD-STD-2167 and
the remaining standards is based upon the DoD Ac-
quisition process which was historically developed
to support hardware and systems acquisition rather
than software acquisition. As a consequence, the
basic life-cycle and review process is not necessarily
consistent with the most modern ways of develop-
ing software. This becomes especially important in
light of the DoD’s recent realization of the impor-
tant impact of software development upon systems
development.

This is a very complex subissue that could require
years to properly study and resolve.

4 METHOD-SPECIFIC OMIS-
SIONS

Although the previous section documents a strong
aversion to “how to” constraints, many members
of the Ada Community felt that DOD-STD-2167
lacked sufficient requirements concerning prototyp-
ing, reuse, and automation of the development pro-

cess.

4.1 PROTOTYPING

DOD-STD-2167 does not adequately address soft-
ware prototyping.

A very important and productive technique in every
engineering field is the use of prototypes, mock-ups,
models, and breadboards. The usefulness of build-
ing and testing models and prototypes, in addition
to producing a “paper” design, has long been recog-
nized. Only in this way can one verify the feasibility
of the design. Perhaps the use of prototypes is one of
the reasons why hardware engineering has advanced
beyond software engineering.

Rapid prototyping life-cycles do not map well into
the classic waterfall life-cycle of DOD-STD-2167.

Although the value of software prototyping is largely
language independent, compilable Ada PDLs and
Ada language features (e.g., separate compilation)
facilitate the production of software prototypes.

The scope of MIL-STD-1521 includes the review and
audit of both hardware and software, yet these two
branches of engineering are treated differently. MIL-
STD-1521B (40.2.1 r) covers the hardware items
to be reviewed during Preliminary Design Review
and lists “Mock-ups, models, breadboards, or proto-
type hardware when appropriate.” MIL-STD-1521B
(40.2.2) makes no mention of software prototypes.
The same applies to Critical Design Reviews (50.2.1
and 50.2.2).

According to page 21 of the Joint Regulation:

“4.2.3 Development of Prototype Com-
puter Resources. ... Software may be de-
veloped to demonstrate critical algorithms,
control sequences, timing, operator inter-

faces, etc. ...”

140

Some mention of prototyping during Requirements
Analysis or Preliminary Design would be useful for
assessing key algorithms, Man-Machine Interfacing,
scenarios, ele,

4.2 REUSE

DOD-STD-2167 needs to address both the produc-
tion of reusable software and the use of reusable soft-
ware. It does not adequately address software reuse,
nor does it sufficiently promote reusability in a prac-
tical way. Isolated references to the importance of
reusability are insufficient.

DOD-STD-2167 does not supply an adequate def-
inition of “reuse”. Any requirements for reuse in
DOD-STD-2167 should be based on such a defini-
tion, a definition general enough to include reusable
requirements, designs, architectures, test software
and data, etc.

DOD-STD-2167 contains the tacit assumption that
all software in a system will be built from scratch for
that system. This thwarts one of the major advances
of Ada, namely the production and use of libraries
of reusable software.

If the DoD’s goals for significant code reuse are to be
met, an automated means of identifying needed pre-
existing Ada software is necessary. DOD-STD-2167
can support this by ensuring that all code devel-
oped has been marked for easy identification (e.g.,
through the use of mandatory keyword and abstract
fields in the prolog of all units).

Some degree of reuse may be contractually required.
Where are the reuse requirements to be specified and
how are they to be verified? Where is the quality,
applicability, and functionality of reuse candidates
to be specified? If reuse candidates prove to be in-
appropriate, is a waiver procedure needed?

The contracting agency should not simply direct
that a system or component is to be reusable or as
reusable as is possible or practical. Such a require-
ment is neither objective nor testable. Components
are not absolutely reusable, but rather reusable to a
certain degree that is application dependent.

The process described by DOD-STD-2167 seems
more appropriate for the development of large ap-
plications rather than the development of a reuse
library consisting of many small separate unrelated

programs. It is not yet clear how DOD-STD-2167
must be modified to be applicable to the develop-
ment of reuse libraries.

DOD-STD-2167 does not appear to have incorpo-
rated any of the lessons learned from the STARS
Reuse Committee.

Because reuse is an area where good tailoring will
make a great difference, DOD-HDBK-287 should be
updated with significant material on reuse.

A requirement to make reuse and reusability an in-
tegral part of all relevant software development ac-
tivities can always be tailored out if not appropriate.

Paragraph 4.4.d of DOD-STD-2167 inhibits reuse
because it implies that contracting agency approval
is needed if one wishes to use reuseable software.
Sufficient checks and balances are already achieved
by 4.4 a, b, and c.

4.3 AUTOMATION

DOD-STD-2167 does not sufficiently promote au-
tomation.

In order to increase the efficiency of the software
development process and to increase the quality of
the resulting software and documentation by reduc-
ing human error, significant portions of the process
need to be automated. This includes, but is NOT
limited to, the production of documentation.

When significant portions of the life-cycle are auto-
mated, what effect does this have on the description
of required activities and the associated reviews?

The DIDs inhibit the automation of documentation
production by requiring, or suggesting via examples,
formats that do not easily map into the way relevant
information is stored at the code level.

The DIDs should be reviewed for compatibility with
the National Bureau of Standards Information Re-
source Dictionary which defines entities and relation-
ships at four levels of data abstraction and which
describe the information which can be used to auto-
matically generate the DIDs.

141

5 OTHER ISSUES

Various other issues were also raised by members of
the Ada Community.

5.1 FORMAL REVIEWS

Many comments were made regarding the formal re-
views of DOD-STD-2167 and MIL-STD-1521.

5.1.1 AMOUNT OF MATERIAL

The size and complexity of today’s systems over-
whelms the current formal review process. It is
not humanly possible to properly perform technical
reviews of manually-produced “gothic novel” sized
specifications. There is often insufficient time for a
proper in-depth analysis and the correction of errors
found. The reviews tend to concentrate on superfi-
cial formatting problems while important technical
issues become buried. The forest gets lost for the
trees.

By having more reviews and limiting the scope of
any single review, a better analysis results for the
following reasons:

1. Smaller documents and partial documents are
easier to review. There is less reviewer fatigue
and the tail end of the documents will be re-
viewed with the same care as the front end. The
tail end of larger documents often “slides by”
due to reviewer fatigue, lack of time, etc.

2. Because smaller documents and partial docu-
ments can be prepared with less lead time, they
will be more current when reviewed.

3. Because smaller documents and partial docu-
ments take less time to produce and review and
have a more narrow scope, a small percentage of
the project’s personnel grind to a shorter stop.

4. Having a larger number of smaller reviews
makes each single review less important. By be-
coming part of the (almost weekly) development
activities, the developers are less impacted by
“non-productive” work and the “dog and pony
show” atmosphere is reduced.

5. If any “show stoppers” are discovered, they will
likely be limited in scope and result in holding
up the development process for a shorter period.
For example, corrections can be processed in a
recap session. A serious error will also tend to
invalidate much less of the work that would have
ensued prior to a more major review.

6. Major process problems will show up earlier,
when they will be easier and less expensive to
correct.

7. Replacing a single massive review with a se-
quence of smaller reviews permits better con-
tractor man-power leveling by overlapping the
requirements analysis, design, and coding of
separate elements. The same advantages of-
fered in DOD-STD-2167 now for the separate
review of different CSCls and incremental re-
views (e.g., for each build or release) would also
result if applied to smaller, relatively indepen-
dent “chunks” of software (e.g., those resulting
from each recursion of the Object-Oriented De-

sign process).

5.1.2 EVOLVING CDR

MIL-STD-1521 and DOD-STD-2167 do not account
for the evolving nature of the CDR.

Due to the high modularity and low complexity of
well-designed Ada software, the lack of distinction
between Ada PDL and Ada code, and the design
aspects of the Ada specification, the classic purpose
of the CDR (i.e., to review and approve unit-internal
logic prior to coding) is no longer relevant. Coding
the Ada specification is a design activity. PDL is not
needed to document the logic of the body of many
units because of their trivial size and complexity.
One should go ahead and code the body once started
since it involves little added work and allows one to
use the compiler to partially check the results prior
to any (semi)formal review. By performing the unit
testing immediately, one can also validate the design
as one goes.

With the use of the same language for both design
and implementation (e.g., Ada), there exists a very
real non-trivial problem of defining what is design
and what is code. This has a very real impact on
determining the scope of the CDR as currently de-
fined.

142

By requiring at CDR and prior to coding and unit
test, a formal review of the “detailed design”, one is
prohibiting the contractor from using RECURSIVE
software development methods that result in the hi-
erarchical top-down design, code, and test of very
small amounts of software (e.g., approx. 1KLOC).
This is a very major and improper “how to” con-
straint on the contractor.

5.1.3 LINEAR NATURE OF REVIEWS

The linear nature of the formal reviews is an im-
proper “how to” constraint on the contractor.

Although DOD-STD-2167 allows incremental re-
views, the linear nature of the classical life-cycle
with its formal reviews that act as bottlenecks be-
tween phases (4.1.2) prohibits the use of recursive
“design a little, code a little, test a little” meth-
ods. Thus for example, although DOD-STD-2167
permits a small number of incremental PDRs per
CSCI per build or release, it does not permit meth-
ods such as Object-Oriented Design in which small
amounts of code (e.g., approximately 1IKLOC) are
recursively designed, coded, and tested during each
pass through the method. On large projects (e.g.,
>100KLOC), it is clearly impractical to hold several
hundred traditional CDRs and PDRs. The bottle-
neck nature of the formal reviews also prohibits one
from coding and testing as one goes — an important
aspect of such methods that permits one to incre-
mentally validate the evolving design.

Because all methods do not produce the same inter-
mediate products in the same order, the scope of the
current reviews is sometimes inappropriate.

The timing and the scope of the results of certain
design activities are set by the timing and nature of
the formal reviews. This is an improper “how to”
constraint on the contractor.

5.1.4 INCONSISTENT PURPOSES

The reviews have too many inconsistent purposes
(e.g., finding errors, educating customer, obtaining
customer input, obtaining customer approval, etc.).
Specifically, some people felt that the formal reviews
have both a management and technical nature that
is often contradictory.

Note that it may be useful to have a single, formal

management-oriented review at the end of a series of
less formal, technically-oriented CSCI reviews. Such
a summary review would serve as a major scheduling
milestone and provide a forum for management to
get summary feedback from the technical personnel.

5.1.5 SIMULTANEOUS REVIEWS

Not all CSCI’s are designed, coded, or tested at
the same time, yet DOD-STD-2167 implies that all
CSCP’s must be reviewed at the same time.

Note that it may be useful to have a single, formal
management-oriented review at the end of a series of
less formal, technically-oriented CSCI reviews. Such
a summary review would serve as a major scheduling
milestone and provide a forum for management to
get summary feedback from the technical personnel.

5.2 CONTENT EXAMPLES IN THE
DIDS

Certain DID examples imply the requirement to doc-
ument irrelevant information.

Some content examples are not relevant. Exam-
ples of machine representations and actual storage
location of data are often no longer applicable for
software written using a good High-Level Language
(HLL).

In numerous places thoughout DOD-STD-2167,
monitoring of memory size and processor time al-
location is mandated. In modern software technol-
ogy, these items are frequently neither a critical or
meaningful measure of the software. For example,
in a virtual memory system, memory and address
space is huge and the ‘channel’ for transfer in/out
of ‘real’ memory is the critical resource. Many other
examples could be given. The correct requirement
should be to:

1. Identify the critical resources,

2. Allocate those resources based on the known
limitations, and

3. Monitor, as soon as is feasible and realistic, the
utilization of these resources.

One should only have to document the relevant re-
sources.

143

The DIDs seem to require the documentation of use-
less information or information that can be derived
from the use of Ada as a PDL.

The content shown in the DID examples may be ir-
relevant in some cases, and information not depicted
may be extremely useful in other cases. It is the con-
tractor’s responsibility to provide the relevant infor-
mation in a meaningful format.

5.3 DOCUMENTATION OF
CONCURRENCY

Nowhere is there a designated place to document the
issues of concurrency associated with a particular
software component.

Traditionally, an entire CSCI, or at least a TLCSC,
would run on a single CPU, but with the existence
of Ada and the increased use of distributed archi-
tectures, this premise no longer holds. It is now
not unusual for a CSCI to consist of many parallel
threads of control.

There is no requirement to document the concur-
rency architecture of a TLCSC, LLCSC, or unit.
One needs to identify the roots of each thread of
control, communication among concurrent entities
(e.g., Ada tasks), and scheduling characteristics (if
unusual or beyond the semantics of the implementa-
tion language).

A “Concurrency Features” paragraph for TLCSCs
should be added to the Software Top-Level Design
Document DID, and similar paragraphs for LLCSCs
and Units should be added to the Software Detajled
Design Document DID.

6 CONCLUSION

It is hoped that the above information will be use-
ful to those who must develop Ada software under
DOD-STD-2167. It may be used as either tailoring
guidelines or as a warning of possible pitfalls to be
managed.

The situation with regard to DOD-STD-2167 Re-
vision A offers considerably more hope to the Ada
Community. The initial draft of Revision A released
for formal industry and government review during
the Fall of 1986 successfully answered several of the

above listed concerns, notably those regarding the
default language-independent coding standard. Due
to the results of that review, a second draft Revision
A is now being produced for a second formal indus-
try and government review cycle scheduled to begin
during April of 1987. This draft is intended to ad-
dress many (but not all) of the remaining concerns of
the Ada community. Most notably, the “top-down”
and PDL issues should be completely answered and
the majority of the unit concerns should also be ad-
dressed. The author, for one, is very pleased with
the DoD’s current plans and is confident that the
second draft will be a major improvement.

144

MCC °87

Military Computing Conference

CONFERENCE
PROCEEDINGS

Disneyland Hotel
Anaheim, California
May 5, 6 & 7, 1987

Published by: EW Communications, Inc.
1170 East Meadow Drive
Palo Alto, California 94303
Telephone: (415) 494-2800

The Military Computing Conference is organized and sponsored by
The Military Computing Institute
P.O. Box 428
Los Altos, California 94023

