THE MANAGEMENT IMPLICATIONS
OF THE RECURSIVE NATURE OF
OBJECT-ORIENTED DEVELOPMENT

presented by

DONALD G. FIRESMITH

Magnavox Electronic Systems Company
M/S 10-C-3 Dept. 566
1313 Production Road
Fort Wayne, IN 46808
(219) 429-4327



THE IMPORTANCE OF THIS TOPIC

Object-Oriented Development (OOD) is the most
popular class of Ada-oriented software development

methods.

OOD methods are RECURSIVE, globally top-down,
“hierarchical’ composition software development
methods that modularize according to object
abstraction and information hiding.

The recursive nature of OOD is often overlooked,
underemphasized, or misunderstood.

The recursive nature of OOD requires major,
often unrecognized, changes in management.



THE RECURSIVE NATURE OF OOD

THE BASIC METHOD

e ASSEMBLIES

SUBASSEMBLIES

THE OOD LIFE-CYCLE



THE BASIC METHOD

OOD methods share the following basic steps.
Recursively, by abstraction level;

e Ildentify the relevant abstract objects.

e For each abstract object:
When too large for a single package =>

Identify the subsystem that encapsulates its §—>
component packages.

When small enough for a single package =>

Identify the associated Ada objects and operations on
Ada objects of that type. Note that:

— Ada objects and operations are only considered within the
context of the abstract object package in which they will be
encapsulated.

— Operations are only considered within the context of the
type of Ada object on which they operate.



Identify the associated Abstract State Machine (ASM)
or Abstract Data Type (ADT) package that
encapsulates its Ada objects and operations. Note:
one package per abstract object.

Code and partially test the packages.

Reecurse the method on any stubbed operations
(1—5 create a new abstraction level of abstract object

packages).



ASSEMBLY

The total set of all Ada programming units developed
during all recursions of the OOD process applied to a
specific set of coherent software requirements (i.e.,

requirements that specify a single well-defined problem).

5



SUBASSEMBLY

The set of those Ada programming units developed during
only a single NON-RECURSIVE pass through the OOD
process. This is the amount of software documented on a
standard OOD diagram. A subassembly is a small
(roughly 1-2 KSLOC), manageable subset of an assembly.

6



The OOD Life-Cycle



THE MANAGEMENT IMPLICATIONS

e PRODUCTS
e STAFFING

e SCHEDULES
e RISKS

e BENEFITS



PRODUCTS

e Early compilable designs:

Because package specifications are naturally produced
on a subassembly by subassembly basis (i.e., design
a little, code a little, test a little), OOD produces
compilable, rather than paper, designs very early in
the software development life-cycle. This allows the
contractor to use the compiler to check interface
consistencies and to easily ensure design and code

consistency.

e Early software:

Because package bodies are also naturally produced
on a subassembly by subassembly basis (i.e., design a
little, code a little, test a little), OOD also produces
executable code very early in the software
development life-cycle. This allows the contractor

to detect bugs earlier by testing (i.e., package and
subassembly testing) the software earlier. This lowers
both development risks and costs.



e Software Development Files (SDFs):

The optimum use of SDFs is on a subassembly basis.
SDFs should be OOD oriented and document the
natural intermediate products of the process.

10



e New products at design reviews (PDR and CDR)

11



cs5C

Depending upon when OOD is initiated, an assembly
may be either a DOD-STD-2167 system,
subsystem/segment, CSCI, TLCSC, or LLCSC.

6.7 12



STAFFING

e Software Development Teams

A successful approach is to assign a software
development team (consisting of a designer, coder,
and tester with one or more optional peer inspectors
from other teams) to develop each subassembly.

e Parallel development

Different software development teams simultaneously
work in parallel on different subassemblies.

e Mongolian horde myth

Because the number of subassemblies tends to grow
exponentially; OOD allows the manager to increase
productivity by increasing the staff.

MW WWU

a0 - Mﬁ,m‘lsz WM”/
e T



SCHEDULE

New life-cycle model

Incompatibility with DOD-STD-2167 and
MIL-STD-1521

New intermediate milestones

New heuristics

14



RISKS

Training problems

Problems with standards

Lack of metrics

Management expectations

Customer and V&V expectations
Incompatibility with military standards
Deferring coding and testing until after design

“What if you find a major design problem late in the
process?”

15



BENEFITS

Parallel development leads to high productivity

Validate design as you develop

Early customer review of compilable design actual
code possible

Early discovery of errors

Documentation mirrors development

16



e 1 BD

CONCLUSION

17



