A PROPOSED INITIAL
CLASSIFICATION AND EVALUATION
OF
ADA GRAPHIC NOTATIONS

Version 1.0 (Draft)

TO BE PRESENTED AT

TRI-Ada’'90

BY

DONALD G. FIRESMITH, PRESIDENT
ADVANCED SOFTWARE TECHNOLOGY SPECIALISTS
17124 LUTZ ROAD
OSSIAN, IN 46777-9406
(219) 639-6305
(219) 747-9389 (FAX)

ABSTRACT:

This paper is divided into the four major sections. The first section
describes the importance of various graphics to document and support the
development of the (often object-oriented) requirements, logical design,
physical design, and dynamic behavior design of Ada software. The
second section describes the recommended criteria to be used to evaluate
%raphic and their associated notations for potential use on Ada projects.

he third section presents a classification scheme that is used in the fourth
section to document the major graphics currently in use in the Ada
community. The fifth and concluding section presents the author's specific
recommendations reguarding notation choice.

ASTS_TP_02 V1.0 17 April 90 page 1 of

1) THE IMPORTANCE OF ADA-ORIENTED GRAPHICS

Well-written Ada is widely recognized as being highly self-documenting and
is often justifiably described as being both a design and a coding language.
It has numerous well-known advantages over traditional narative english
Program Design Languages (PDLs), and many vendors currently provide
tools that support the use of Ada or Ada PDLs directly in the design and
documentation of Ada software. The Department of Defense, in violation of
DODD 500.43, Acquisition Streamlining, has even mandated in DODD
3405.2, f Ada in , the use of Ada PDLs by requiring
"An Ada-based program design Ianguage (PDL) shall be used during the
designing of the sofware. Use of a PDL that can be successfully compiled
by a validated Ada compiler is encouraged in order to facilitate the
portability of the design".

And yet, every major Ada-oriented software development method requires
or suggests the use of one (or more) Ada-oriented graphics and associated
notations. Some methods, such as Ed Colbert's Object-Oriented Software
Development (OOSD) and Don Firesmith's Ada Development Method
(ADM) include different graphics. The question is "Why?" when Ada alone
should do the job.

The reasons are several. Although Ada code and PDLs are relatively self-
documenting, they exist only at the extended library unit, program unit,
subunit, and compilation unit level. Ada does not yet support any construct
(e.g., DOD-STD-2167A Computer Software Component or CSC,
subassembly, Rational subsystem) above the generic library package level.
AIthou?h the relevant physical static architecture design information is
implicitly in the code (e.g., via with clauses), the information concerning an
entire CSC is scattered over numerous printouts of library units, bodies,
and subunits. When a software engineer or technical manager must
understand several units and their interrelationships, it is clear that "a
picture is worth a thousand words" and "you can't see the forest for the
trees” without the appropriate graphics. The dynamic behavior design is
even less explicit because it deals with time and because subprogram and
entry calls often cross extended library unit and subassembly boundries.
Similarly, requirements analysis and logical design deal with different
higher-level concepts than physical design, and software engineers have
also noticed that the structure of the requirements and logical design need
to be consistent with the structure of the physical design and code for the
sake of understandability and requirements traceability. For these reasons

ASTS_TP_02_V1.0 20 April 90 page 2 of

and others, the SIGAda Software Development Standards and Ada
Working Group (SDSAWG) successfully lobbied to get the requirement to
use PDLs removed from the original DOD-STD-2167.

The use of Ada-oriented graphics is therefore necessary for the proper
understanding and documentation of non-trivial Ada software.

2) RECOMMENDED CRITERIA FOR GRAPHICS EVALUATION
DOCUMENT ALL ASSEMBLIES, SUBASSEMBLIES, CLASSES, AND ABSTRACT
OBJECTS INCLUDING ATTRIBUTES, OPERATIONS, AND EXCEPTIONS.

FOR EACH OBJECT CLASS AND ABSTRACT OBJECT, DOCUMENT THE
RELEVANT ASSOCIATED:

REQUIREMENTS.
LOCATION (VIA LIBRARY DIAGRAMS):

ASSEMBLY, SUBASSEMBLY, AND EXTENDED LIBRARY UNIT.
IMPLEMENTATION:

IDENTIFIER AND VARIETY OF ADA PROGRAM UNIT OR TYPE.
SUBUNIT STRUCTURE (IF ANY).

INHERITANCE RELATIONSHIPS.
CLASSIFICATION:

ABSTRACT OBJECT, OBJECT CLASS, OR CLASS OF CLASSES.
ABSTRACT STATE MACHINE OR ABSTRACT DATA TYPE.
SEQUENTIAL OR CONCURRENT.

LIBRARY UNIT, SUBUNIT, ADA TYPE, OR ADA OBJECT.

RESOURCES:
EXPORTED, HIDDEN, AND REQUIRED:
ATTRIBUTES (E.G., ADA DATA TYPES AND OBJECTS).
OPERATIONS.
EXCEPTIONS.

DYNAMIC BEHAVIOR VIA:

STATE TRANSITIONS.

DATA AND CONTROL FLOWS.

CONTROL DIAGRAMS.

TIMING RELATIONSHIPS.
OBJECT-ORIENTED GRAPHICS ARE REQUIRED TO DOCUMENT
MULTIPLE OBJECTS, CLASSES, THE ADA UNITS THAT IMPLEMENT
THEM, AND THEIR RELATIONSHIPS AND INTERACTIONS.

OBJECT-ORIENTED GRAPHICS ARE REQUIRED TO DOCUMENT:

REQUIREMENTS STRUCTURE AND INTERACTIONS.
LOGICAL DESIGN.
PHYSICAL DESIGN.
STATIC ARCHITECTURE.
DYNAMIC BEHAVIOR.
EXCEPTION PROPAGATION.

GRAPHICS SHOULD BE:

UNDERSTANDABLE:
SIMPLE, CLEAR, AND INTUITIVE.
MAINTAINABLE.
ADA-ORIENTED.
OBJECT-ORIENTED.

GRAPHICS SHOULD NOT ENCOURAGE FUNCTIONAL APPROACHES.

BECAUSE NO SINGLE GRAPHIC CAN DOCUMENT EVERYTHING
WITHOUT BECOMING CLUTTERED AND INCOMPREHENSIBLE,
MULTIPLE GRAPHICS DOCUMENTING DIFFERENT ASPECTS (E.G.,
STATIC ARCHITECTURE, DYNAMIC BEHAVIOR) SHOULD BE USED.

GRAPHICS SHOULD NOT VIOLATE THE MILLER (HRAIR) LIMIT BY
DOCUMENTING MORE THAN SEVEN PLUS OR MINUS TWO NODES
(E.G., ABSTRACT OBJECTS OR CLASSES) ON AVERAGE.

BECAUSE BOTH OBJECTS AND CLASSES ARE COMPLETELY
CHARACTERIZED FROM THE USER VIEWPOINT BY THEIR EXPORTED
OPERATIONS AND EXCEPTIONS, ICONS SHOULD SHOW THESE
EXPORTED RESOURCES IN ADDITION TO THE IDENTIFIER OF THE
OBJECT OR CLASS.

3) ADA-ORIENTED GRAPHICS CLASSIFICATION SCHEME

Ada-oriented graphics can be classified as follows:

1) Graphics documenting fequirements and Logical Design

1.1) Graphi mentin ic Archi r @,D

1.1.1) Graphics based on Object Abstraction,~ 9 eneral

1.1.2) Graphics based on Semantic Relationships { Spe ‘}_‘;‘:;_%EMTKEK

1.2) Graphi mentin nami vior .'/"7’;ﬂ£§,;5i,ﬁ,,§_mpoﬂ
\ ’NHE,Q/TIS

1.2.1) Graphics based on State
1.2.2) Graphics based upon Data Flow
1.2.3) Graphics based upon Timing Tiraiarg Diagrass

Pef"“’ Ve rs
2) Graphics documenting Physical Design and Code
2.1) Graphi mentin ic Archi r

2.1.1) Graphics based upon Collections of Collections of Library Units

2.1.2) Graphics based upon Collections of Library Units
2.1.3) 6/*4,0141&5 Lased ow _Z/ﬂ(/(}w(qm/ Library Un i ts
2.2) Graphics documenting Dynamic Behavior

2.2.1) Graphics based upon Calling
2.2.2) Graphics based upon Timing

4) EVALUATION OF ADA-ORIENTED GRAPHICS
DIAGRAMS BASED ON OBJECT ABSTRACTION:

ADM SUBASSEMBLY OBJECT INTERACTION DIAGRAM (SOID)
OOSD OBJECT INTERACTION DIAGRAM (OID)

OOSD OBJECT HIERARCHY DIAGRAM (OHD)

OOSD OBJECT CLASS DIAGRAM (OCD)

OOSD WITH DEPENDENCY DIAGRAM

GOOD OBJECT DIAGRAM

DIAGRAMS BASED ON SEMANTIC RELATIONSHIPS:

ADM SUBASSEMBLY SEMANTIC NET (SSN)
EVB SEMANTIC NETWORK
OOA INFORMATION STRUCTURE DIAGRAM
ENTITY RELATIONSHIP ATTRIBUTE (ERA) DIAGRAM

DIAGRAMS BASED ON STATE:

ADM STATE TRANSITION DIAGRAM (STD)
OOA STATE TRANSITION DIAGRAM (STD)
EVB STATE TRANSITION DIAGRAM (STD)
OOSD MEALY STATE TRANSITION DIAGRAM

DIAGRAMS BASED ON DATA FLOW:

EBDM CLOUD DIAGRAM

ADM OBJECT-ORIENTED DATA/CONTROL FLOW DIAGRAM
(OOD/CFD)

OOA DATA FLOW DIAGRAM (DFD

GOOD DATA FLOW DIAGRAM (DFD

M-BO-O-D DATA FLOW DIAGRAM (DFD)
DIAGRAMS BASED ON TIME:

ADM SUBASSEMBLY TIMING DIAGRAM
BOOCH TIMING DIAGRAM

5) CONCLUSION

