use Cases: THE PROs AND CONS

DoNaLD G. FIRESMITH

VER THE LAST THREE YEARS, USE CASES HAVE BECOME WELL ESTABLISHED AS
, one of the fundamental techniques of object-oriented analysis (OOA).
ithough they were introduced by Ivar Jacobson to the object community at
“ha 1987 OOPSLA conference,! it was the publication of his book OBJECT-
. ORENTED SOFTWARE ENGINEERING: A USE CASE DRIVEN APPROACH? in 1992 that
ked the true beginning of use cases’ meteoric rise in popularity. Possibly
feaction to the previous structured methods, carly object-oriented (00)
velopment methods overemphasized static architecture and partially
ored dynamic behavior issues during requirements analysis, especially
ove the individual class level where state modeling provides an important
technique for dynamic behavior specification. Use cases provide a great many
siefits in addition to correcting this overemphasis, and designers of most
gjor OO development methods (including my own) have jumped on the
ndwagon and added use cases during the last few years. In the resulting
hoopla and hype; however, there has been little discuission of the limitations
d potential pitfalls associated with use cases. In this colurnn I attempt to
ovide a more balanced presentation and to caution against the uncritical
Ceptance of use cases as the latest patent medicine for all software ailments.

he term wuse case was introduced by Ivar Jacobson et al.l and has been
efined.2~ A use case is a description of a cohesive set of possible dialogues
«., series* of interactions) that an individual actor initiates with a system.

! ise case typically involves branching or Jooping and may depend on the state of the system and any
ardmeters of the interactions between dctors and the system.

I71

DEVELOPMENT METHODOLOGIES

e Comoa)

ACTOR

Fiure 1. The primary use case notations.

An actor is a role played by a user (i.e., an external entity that interacts

‘directly with the system) (Figure 1). A use case is thus a general way of u_siﬁg

some part of the functionality of a system. S
A use case is not a single scenario but rather a “class®
that specifies a set of related usage scenarios, each

which captures a specific course of interactions
take place between one or more actors and the systet
Therefore, the description of an individual use case typ-

i72

ically can be divided into a basic course and zero or mo)
alternative courses. The basic course of a use case is the most common,
important sequence of transactions that satisfy the use case. The basic cour
is therefore always developed first. The alternative courses are variants oL
basic course and are often used to identify error handling. Within reason,
more alternative courses identified and described, the more complete
description of the use case and the more robust the resulting system. ..,
As a user-centered analysis technique, the purpose of a use case is to yiel
a result of measurable value to an actor in response to the initial requés
that actor. A use case may involve multiple actors, but enly a single al
initiates the use case. Because actors are beyond the scope of the sY’ {
use-case modeling ignores direct interactions between actors. :
A use case may be an abstract use case or a concrete use case. An abstra
case will not be instantiated on its own but is only meaningful when US€
describe functionality that is common between other use cases. On the 0
hand, a concrete use case can be instantiated to create a specific scenat?
According to Ivar Jacobson, use cases are related by two main associdi=
extends and uses. The extend association specifies how one use-case de
tion inserts itself into, and thus extends, a second use-case descriptio®
completely independent and ignorant of the first use case. IDepert
some condition, the second use case may be performed either with 0

Use Cases: The Pros and Cons

BERTER THE
/ S
ENTER THE USES
SECDRED Doog ST T T ."'
USE"

\

\
CHANGE THE -
ENTRY CODE \v.stnnv
usaq R.MSE THE
cumcs THE M‘“"‘"
SECURIT‘(CCDE
SECURITY EXTENDS
\ /\ !

GUARD

f

EMPLOYEE

1 vsips

SECURITY o

Ficune 2. An example use-case model.

‘out the extending use case. Extends can therefore be
wed as a kind of “inheritance” between use cases in
¢h the original use case definition is extended by the
tending use case description to form a new “com-
bined” use case. On the other hand, the uses association
n be viewed as a kind of “delegation” or “aggregation”
that captures how one or more use-case descriptions incorporate the com-
mon description of another use case. These two associations are closely
lated and easy to confuse. One clue as to which is which is that if A extends
en the extended B “contains” A, whereas if A uses B, then A “calls” B. The .
tual distinction between these two associations is unclear, and Rumbaugh#
has thankfully combined them into a single adds association from the main
concrete use case to the abstract use cases that it uses.

© Clearly, use cases are functional abstractions and are thus large operations,
;the implementations of which thread through multiple objects and dasses.
owever, a use case need not have anything to do with objects. As pointed out
Jacobson,’ “it should be clear that use-case modeling is a technique that is
uite independent of object modeling. Use-case modeling can be applied to
any methodology-—~structured or object-oriented. It is a discipline of its own,
orthogonal to object modeling.”

173

DEVELOPMENT METHODOLOGIES

AN EXAMDIE

The requirements for Door Master, a security system for controlling entry of.
employees through a secured door, are documented in a ROAD column
Except for those requirements concerned with initialization, the function;
requirements for Door Master are captured in the following nine use cas :

1. ENTER_THE_DTSABLED_ DOOR: Employees and security guards ent
freely through the door when Door Master is disabled.

2, ENTER_THE_SECURED_DCOR: Employees and security guards enter |
through the door by (1) entering the entry code on the nurneric keypad,
(2} entering through the door, and (3) closing the doot behirid them;

3. CHANGE_THE_ENTRY_CODE: Secunty guards change the entry code by
(1) pressing the “change entry code” button on the control panel, (2)_{;"
providing authorization by entering the security code on the numeric:
keypad, (3) entering the new entry code on the numeric keypad, and (4)_f-
verifying the new entry code by reentering it on the numeric keypad.

4. CHANGE_THE_SECURTTY_CODE: Security guards change the security’
code by (1) pressing the “change security code” button on the control
panel, (2) providing authorization by entering the old security code on-
the numeric keypad, (3) entering the new security code on the numerlc_
keypad and (4) verifying the new security code by reentering it on the
numeric keypad.

5. ENABLE_THE_DOOR_MASTER: Security guards enable Door Master by
(1) pressing the “enable” button on the control panel and (2) providing
authorization by entering the security code on the numeric keypad
Door Master then (3) turns off the disabled Light, (4} turns on the
enabled light, and (5) locks the door. .

6. DISABLE_THE_DOOR_MASTER: Security guards disable Door Master
by (1) pressing the “disable” button on the control panel and (2) pro-
viding authorization by entering the security code on the numeric
keypad. Door Master then (3) turns off the enabled light, (4) turns on
the disabled light, and (5) unlocks the door.

The following two abstract use cases are common to, and are therefore uSCd
by, five of the concrete use cases:

7. ENTER_THE_ENTRY_CODE: Employees and security guards enter the
entry code by pressing five keys on the numeric keypad followed by th
“enter” key. Door Master beeps after each key and verifies the entry code:

8. ENTER_THE_SECURITY_CODE: Employees and security guards entef

174

Use Cases: The Pros and Cons

the entry code by pressing seven keys on the numeric keypad followed
by the “enter” key. Door Master beeps after each key and verifies the

.. entry code.

The followmg abstract use case extends the ENABLE_THE_DOOR_MASTER
nd ENTER_THE_SECURED_DOOR Use cases:

9. RAISE_THE_ALARM: The alarm is raised if the door is left open too Jong
or if the door is not shut when Door Master is enabled. The security
guards disable the alarm by entering the security code.

'Tue BENEFITS OF USE CASES

‘Use cases have become extremely popular since the publication of OBECT-
" ORENTED SOFTWARE ENGINEERING: A Ust CASE DRIVEN APPROACH in 1992.
‘They have been added to numerous OO development methods (e.g., Booch,
Firesmith, Rumbaugh) because they offer many important advantages,
including the following:

» Asauser-centered technique, use cases help ensure that the correct sys-
tem is developed by capturing the requirements from the user’s point
of view.

+ Use cases are a powerful technique for the elicitation and documenta-
tion of blackbox functional requirements.

+ Because they are written in natural language, use cases are easy to
understand and provide an excellent way for communicating with cus-
tomers and users. Although computer-aided software engineering
(CASE) tools are useful for drawing the corresponding interaction dia-
grams, use cases themselves reguire remarkably little tool support.

» Use cases can help manage the complexity of large projects by decom-
posing the problem into major functions (i.e., use cases) and by
specifying applications from the users’ perspective.

» Because they typically involve the collaboration of multiple objects and
classes, use cases help provide the rationale for the messages that glue
the objects and classes together. Use cases also provide an alternative to
the overemphasis of traditional OO development methods on such sta-
tic architecture issues as inheritance and the 1dent1ﬁcat1on of ob]ects
and classes.

* Use cases have emphasized the use of lower-level scenarios, thereby
indirectly supporting Booch’s important concept of a mechanism, a

175

DEVELOPMENT METHODOLOGIES

kind of pattern that captures how “objects collaborate t6 provide SOme
behavior that satisfies a requirement of the problem.””

« Use cases provide a good basis for the verification of the higher- leVel.;f
models (via role-playing) and for the validation of the functlonalif
requirements (via acceptance testing).*

+ Use cases provide an ob}ective means of project-tracking in whxchf_'
earned value can be defined in terms of use cases implemented, tested
and delivered. e

+ Use cases can form the foundation on which to specify end-to- endtun :
ing requlrements for real- tlme apphcauons :

THE DANGERS OF MIsusING USE CASES

Because of their many important advantages and extreme popularity, use cases
have become a fundamental part of object technology.and have been incor-
porated in one form or another into most major OO development methods.
In the rush to jump onto the use-case bandwagon, use cases have been perceived
by some as either a panacea or as an end in and of themselves. Unfortunately,
this has often led to the uncritical acceptance of use cases without any exami-
nation of their numerous limitations and ample opportunities they offer for
misuse. The following provides an overview of the major risks associated with
use cases:

+ Use cases are not object oriented. Each use case captures a major func-
tional abstraction that can cause the numerous problems with
functional decomposition that object technology' was to avoid. These
problems include:

» The functional nature of use cases naturally leads to the functiond
decomposition of a system in terms of concrete and abstract use ¢ases
that are related by extends and uses associations. Each individual us¢
case involves different features of multiple objects and classes, and each
individual object or class is often involved in the implementation ¢
multiple use cases. Therefore, any decomposition based on use cases
scatters the features of the objects and classes among the individual ust
cases. On large projects, different use cases are often assigned to differ
ent teams of developers or to different builds and releases. Because th¢
use cases do not map one-to-one to the objects and classes, these tear®

*Because a use case (class) is not as specific as a usage scenario (instance), use cases may lack sufficient for
mality and detail to supply adequate criteria for the passing of acceptance tests. :

176

Use Cases: The Pros and Cons

can easily design and code multiple, redundant, partial variants of the
same classes, producing a corresponding decrease in productivity, reuse,
and maintainability. This scattering of objects to
nse cases leads to the Humpty Dumpty effect, in
which all the king’s designers and all the king’s
- coders are unlikely to put the objects and classes
. back together again without a massive expenditure
of time and effort,

The use-case model and the object model belong
to different paradigms (i.e., functional and QO)
and therefore use different concepts, terminology,
techniques, and notations. The simple structure of
the use-case model does not clearly map to the net-
work structure of the object model with its
collaborating objects and classes. The require-
ments trace from the use cases to the objects and
classes is also not one-to-one. These mappings are

informal and somewhat arbitrary, providing little

guidance to the designer as to the identification of objects, classes, and
their interactions, The situation is clearly reminiscent of the large
semantic gap that existed between the data flow diagrams (network) of
structured analysis and the structure charts (hierarchy) of structured
design. The use of the single object paradlgm was supposed to avoid this
problem.

Another potential problem with use case modeling is knowing when to
stop. When one is building a nontrivial application, there are often a
great number of use cases that can produce an essentially infinite num-
ber of usage scenarios, especially with today’s graphical user interfaces
and event-driven systems. How many use cases are required to ade-
quately specify a nontrivial, real-world application? As object technology
isapplied to ever increasingly complex projects, the simple examples and
techniques of the textbooks often have trouble scaling up. The use of
concurrency and distributed architectures often means that the order of
the interactions between the system and its environment s potentially
infinite. Too few use cases result in an inadequate specification, while too
many use cases lead to functional decomposition and the scattering of
objects and classes to the four winds. Often, systems and software engi-.
neers must limit their analysis to the most obvious or important
scenarios and hope that their analysis generalizes to all use cases.

Although use cases are functional abstractions, use-case modeling typi-

cally does not yet apply all of the traditional techniques that are useful

177

DEVELOPMENT METHODOLOGIES

178

for analyzing and designing functional abstractions. Most current tech-
niques do not easily handle the existence of branches and loops in the
logic of a use case. Interaction diagrams are primarily oriented towards
a simple, linear sequence of interactions between the actors and the
major classes of the system. The use of abstract use cases and either
extends or uses associations to solve this problem only exacerbates the
functional decomposition problem. Some approach similar to that of
the basis paths of structured testing would clearly help determine the
adequacy of the use case model, but such an approach is not yet avail-

~ able to the typical developer. Most techniques do not address the issues

of concurrency and the different types of messages that result. As illus-
trated in Rumbaugh# and Firesmith,® the concepts of preconditions,

_postconditions, invariants; and triggers should also.be added to.better .
- analyze and specify use cases.

Since they are created at the highest level of abstraction before objects
and classes have been identified, use cases ignore the encapsulation of
attributes and operations into objects. Use cases therefore typically
ignore issues of state modeling that clearly impact the applicability of
some use cases. Any required ordering of use cases is ignored and should
be captured using some variation of Firesmith’s scenario lifecyclet or
Fusion’s event lifecycle.? The basic ideas and techniques of use cases
should also be applied to Booch mechanisms? and integration testing,
but adequate extensions have yet to be published.

Another major problem with use-case modeling is the lack of formality
in the definitions of the terms use case, actor, extends, and uses. Similarly,
the specification of individual use cases in natural languages such as
English provides ample room for miscommunication and misunder-
standings. Use cases provide a much less formal specification of their
instances (i.e., individual usage scenarios) than do classes of objects.
Whereas the inheritance relationship between classes of objects is well
defined and has been automated by compilers, the inheritance and del-
egation relationships provided by extends and uses associations aré
much less well defined. While everything may seem clear at the highest
level of abstraction, the translation of use cases into design and code at
lower levels of abstraction is based on informal human understanding
of what must be done. This also causes problems when it comes to using
use cases for the specification of acceptance tests because the criteria fof
passing those tests may not be adequately defined.

Another major problem is the archetypal subsystem architecture that
can result from blindly using use cases. Several examples in books an¢
papers have consisted of a single functional control object represent-
ing the logic of an individual use case and several dumb entity object

Use Cases: The Pros and Cons

controlled by the controller object. They also may have included an
interface object for each actor involved with the use case. Such an
architecture typically exhibits poor encapsulation, excessive coupling,
and an inadequate distribution of the intelligence of the application
among the classes. Such architectures are less maintainable than more
object-oriented architectures.

* Use cases are defined in terms of interactions between one or more
actors and the system to be developed. However, all systems do not
have actors, and systems may include signification functionality that is
not a reaction to an actor’s input. Embedded systems may perform

major control functions without significant user input. Concurrent)

objects and classes need.not passively wait for incoming imessages to

‘Teact. They may instead proactively make decisions based on results
derived from polling terminators. Traditional use-case modeling
seems less appropriate for such applications.

* Finally, the use of use cases as the foundation of incremental develop-
ment and project tracking has its limitations. Basing increments on
functional use cases threatens to cause the same problems with basing
builds on major system functions. Instead of building complete classes,
developers will tend to create partial variants that require more iteration
from build to build than is necessary. In turn, this will unnecessarily
increase the maintenance costs of inheritance hierarchies. Basing earned
value on the number of use cases implemented may be misleading
because all use cases may not be of equal value to the user and because
of the previously mentioned problems due to functional decomposition
and the scattering of partial variant objects and classes among use cases.

CoNCLUSION

What, then, should developers do? Use cases clearly offer many important
benefits and are powerful weapons that probably should be in the arsenal of ail
software analysts, designers, and testers. Unfortunately, however, they are func-
tional rather than object-oriented and can significantly compromise the
benefits of object technology if blindly added to the OO development process.
Fortunately, the risks associated with use-case modeling can be mitigated
_Through knowledge, training, and avoiding an overenthusiastic acceptance.
Use cases should be only one of several ways of capturing user requirements.
Models of objects, classes, and their semantic relationships should be consis-
tent with, but not totally driven by, the use cases. Designers should beware of
and minimize scattering the features of a use case’s objects and classes, and they
should exercise great care to avoid the creation of partial, redundant variants

179

DEVELOPMENT METHODOLOGIES

180

of classes, especially on large projects involving multiple builds and releases.
The architectural guidelines of Rebecca Wirfs-Brock? should be followed to
avoid creating excessive functional controller objects that dictate the behavior
of dumb entity objects. Most importantly, use cases should not be used as an
excuse to revert to the bad old days of functional decomposition and func-
tionally decomposed requirements specifications.

References

1. Jacobson, I. Object-oriented development in an industrial environment, SIGPLAN
NoTICES 22(12):183-191.

2. Jacobson, I, M. Christersson, P. Jonsson, and G. Overgaard. OBJECT-ORIENTED
SOPTWARE ENGINEERING: A USE CASE DRIVEN APPROACH, AddlSOIl-WesleY,

. Wokingham, UK, 1992. . :

3. Jacobson, I, M. Encsson, and A, Jacobson. THE OBIECTADVANTAGE BUS]NESS PROCESS
RE-ENGINFERING WITH OBJECT TECHNOLOGY, Addison-Wesley, Wokingham, UK, 1995,

4. Rumbaugh, J. Getting started: Using use cases to capture requn:ements JOURNAL OF
OEBJECT-ORENTED PROGRAMMING 7(5):8-12, 1994,

5. Jacobson, L Basic use-case modeling (continued), REPORT ON OBJECT-ORIENTED
Anapysis AND DESIGN 1(3):7-9, 1994,

6. Firesmith, D. Modeling the dynamic behavior of systems, mechanisms, and classes
with scenarios, REPORT ON OBJECT-ORIENTED ANATYSIS AND DESIGN 1(2):32--36, 1994,

7. Booch, G. OBECT-ORIENTED ANAIYSIS AND DESIGN WITH APPLICATIONS,
Benjamin/Cummings, Redwood City, CA, 1994.

8. Coleman, D., et al. OBECT-ORIENTED DEVELOPMENT: THE FUsION METHOD, Prentice
Hall, Englewood Cliffs, NJ, 1994.

5. Wirfs-Brock, R., B. Wilkerson, and L. Wiener. DeSiGNING OQBJECT-(QRIENTED
SOFTWARE, Prentice Hall, Englewood Cliffs, N, 1990,

