
Viewing the OML as a Variant of the UML

Brian Henderson-Sellers1 , Colin Atkinson2, and Don Firesmith3

1 University of Technology, Sydney, PO Box 123
Broadway, NSW 2007, Australia

brian@socs.uts.edu.au
2 Fraunhofer Institute, Kaiserslautern, Germany

atkinson@iese.fhg.de
3 Lante Corporation, Dallas, USA

FiresmithD@aol.com

Abstract. The OPEN Modelling Language, OML, was published dur-
ing the standardization process which finally led to UML version 1.3.
While being contributory to this process, there are still some features
of the OML which have not been adopted in the current version of the
UML. These features offer capabilities which are complementary to those
of the UML. This paper describes how these features of the OML can be
made available to UML developers by viewing the OML as a variant of
the UML.

1 Introduction

The UML [1] and OML [2] are two object-oriented modeling languages which
were both developed in response to the unease in the software industry about
the growing divergence of object-oriented methods, and the often unnecessary
differences in object-oriented modeling notations. Both notations represent an
attempt to capture the core concepts of object-orientation and standardize upon
a set of intuitive graphical icons. As such, they share many core concepts and,
in fact, have many common roots. However, there are certain areas in which the
OML and UML do differ significantly, and where UML developers may benefit
directly from the OML features not currently supported in the OMG standard.
Alternatively, OML developers may benefit from access to UML features not
supported in OML.

Given the large overlap between the core concepts, it would seem desirable
to provide object-oriented modelers with the union of features in the OML and
UML. Fortunately, the UML provides a couple of ways to extend the features of
the UML with new concepts: one is called a UML variant and the other a UML
extension.

An extension uses special “built in” features at the M1 level (Fig. 1). These
features are stereotypes, tagged values and constraints, together with appropri-
ate notational elements. The changes are made at the model level. The UML
documentation contains two such pre-defined extensions: one for business engi-
neering and one for supporting the Objectory process [1,3]. So for instance, we

Robert France and Bernhard Rumpe (Eds.): �UML�’99, LNCS 1723, pp. 49–66, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



50 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

might choose (as does Objectory: [1] (p4-7)) to specialize the class concept into
boundary classes, entity classes and control classes by application of an appro-
priate stereotype at the M1 (model) level. The resulting combination of UML
and these additional user-defined stereotypes is known as a “UML extension”.

M3 MOF

M2 UML 
Metamodel

M1
Model

M0
Data

instance_of

instance_of

instance_of

Fig. 1. UML’s four layer architecture

A UML variant, on the other hand, extends the UML metamodel at the
M2[4] level i.e. the metamodel itself. The variant uses the existing architecture
of the metamodel for UML and adds concepts (metatypes) to the metamodel.
The resulting metamodel is known as a “UML variant”.

In a paper of this size it is not possible to give a complete specification of
an OML extension/variant to the UML. The focus of this paper is rather to
describe the merits of doing so, discuss the relative pros and cons of using the
variant or extension mechanism, and to illustrate what form such a variant would
take. Following a brief background-setting overview of the OML (Sect. 2), we
then give, in Sect. 3, a technical description of some of the metalevel features of
UML and OML, and the general nature of the difference between them. We also
describe a number of features of the OML which we believe would be particularly
beneficial to UML developers. In the following two sections (Sects. 4 and 5), we
describe why the UML variant approach seems to make more sense than the
UML extension approach for this purpose and also describe, in Sect. 5, how such
a variant would be defined. In Sect. 6, we extend the discussion to propose the
use of conformant and non-conformant variants.

2 The History of OML and Future Contributions to the
UML

OML [2], was published in early 1997 during the standardization process which
finally led to the (current) UML Version 1.3 [1]. While contributing to that
process, there are still some features of OML which have not yet been adopted



Viewing the OML as a Variant of the UML 51

into UML. An overview of the comparative features of OML, as compared to
UML, was given in [2,5] and in more detail in [6].

OML has been influenced by pure OO approaches such as RDD [7] and
Eiffel [8] but at the same time remains a completely programming language-
independent modeling language. OML Version 1.0 (published in 1997) was
amended slightly in 1998 [9,10] to bring it into alignment with the, by then
OMG-endorsed, UML Version 1.0. Despite the large overlap between the OML
and the UML, there are still some useful features of the OML which are not
currently adequately supported in the UML and which UML users may find
helpful for their modeling work. In this paper, we identify these features and
explain how the most important OML-specific features may be reconciled with
the OMG standards in the form of a UML variant. By presenting these features
as an extension to the UML, we can make these OML features available to de-
velopers using UML in their development project. The long-term goal would be
to offer these modifications to the OMG for potential inclusion in future versions
(e.g. Version 2.0) of the OMG/UML standard.

3 Key OML and UML Metamodel Fragments

3.1 UML

UML is characterized by, and emphasizes, use cases, relationships as reifiable
classes, an obvious data modeling heritage, the use of bidirectional associations
and rôles on association ends from OMT and an increasing reliance on stereo-
types.

Association
Class

Classifier

Class Interface Datatype

Association

Association
End

(aggregation)

Attribute

Structural
Feature

Operation Method

Behavioural
Feature

Feature
(visibility)

1 *

Generalizable
Element

Node Component

<<invariant>>
Constraint

<<postcondition>>
Constraint

<<precondition>>
Constraint

Fig. 2. Main structural elements of the UML metamodel (Version 1.3)

Fig. 2 shows the static architectural model for UML in which there are
five major metalevel concepts, collectively called Classifier: Class, Interface,



52 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

Datatype, Node and Component. In UML, an object is “an instance that origi-
nates from a class” [1] (p2-90), but is not defined in the core model package. An
object in UML has only attributes and no operations [1] (p3-53).

Interface is shown as a subtype (using the Generalization relationship) of
Classifier which means, according to the definition of Generalization in [1] (p2-
34) (see also below), that the Interface has all the characteristics of its supertype,
Classifier. Since a Classifier has attributes, methods and operations while an
Interface has only operations, this would appear to be inconsistent with the
axiomatic definitions, meaning that the UML metamodel is not applied correctly
in describing itself.

0..*

Type
Implementation
Class

Class Interface

Classifier

realizes

Classifier and Class have
basic rectangle.
Type, Interface and
Implementation Class
need <<stereotype>>.

realizes

not is-a-kind-of
since Type 
negates some of
Class’ features

Two
stereotypes 
of Class

has no
attributes
or methods

has no
methods

Fig. 3. Relationships between the UML metaclasses Classifier, Class, Interface
and the two Class stereotypes: Type and Implementation Class

While Class and Classifier are full metalevel concepts (metaclasses), there
are other relevant stereotypes: �type� and �implementationClass� (Fig. 3)
where the ImplementationClass is said to realize the Type. One area of current
concern with this model is that, once again, the nature of a stereotype is that
of specialization inheritance (a.k.a. Generalization), since stereotyped instances
have “the same structure (attributes, associations, operations) as a similar non-
stereotyped instance of the same kind” [1] (p2-66). Thus, in Fig. 3, we should
be able to say that “a type is a special kind of class”. This is, however, not true
since a Class can have Methods but a Type cannot. Thus the Type metaclass
(shown as such in Fig. 3) subtracts from its “parent”, the Class metaclass (as
does Interface from Classifier) — this subtraction technique with “inheritance”
was recognized many years ago by Brachman [12] as a bad modeling strategy.

Classifiers are composed of (black diamond notation) features which have
an associated visibility (Fig. 2). Features may be structural or behavioral. Be-
havioral features are either operations or methods, where methods implement



Viewing the OML as a Variant of the UML 53

operations. Structural features are only attributes. Assertions can be included
by adding stereotyped Constraints to operations and classifiers as shown.

Relationship

GeneralizationDependency TransitionLinkAssociation

subtypes:
Usage
Binding
Permission
Abstraction

ModelElement

Include Extend

Generalizable
Element

Flow

subtypes of composition 
and aggregation via 
metaattributes on the 
AssociationEnd
metaclass

Fig. 4. Metamodel fragment for relationships in UML Version 1.3

Fig. 4 shows the Version 1.3 metamodel for UML relationships. Relationship
is an abstract metaclass with no specific semantics which defines “a connec-
tion among model elements” [1] (p2-41). Subtypes of Relationship are Associa-
tion, Dependency, Flow and Generalization. In addition, Include and Extend are
metaclasses in the Use Cases package which also inherit from Relationship (in
the Core package). Extend and Include are also said to be directed relationships
although this does not seem to be enforced anywhere in the metamodel.

Of the metasubtypes, an Association is said to be “a semantic relationship
between classifiers” [1] (p2-19) which defines a set of tuples relating the instances
of these classifiers. It is bidirectional in nature. A Dependency is a “term of con-
venience for a relationship other than an Association, Generalization, Flow, or
metarelationship” [1] (p2-30). It is a undirectional (or directed) relationship —
but the unidirectionality is not enforced. There are four kinds of Dependency:
Abstraction, Binding, Permission and Usage (shown with stereotype labels in the
notation). Abstraction may be unidirectional or bidirectional and has four pre-
defined stereotypes: Derivation, Realization, Refinement and Trace (also shown
with a single stereotype label in the notation). While �realize� may be unidi-
rectional or bidirectional, �derive� is unidirectional whereas for �trace� it is
said that the “directionality of the dependency can often by ignored” [1] (p2-19).
Binding, Permission and Usage are unidirectional and the last two have several
pre-defined stereotypes each. Flow represents a relationship between two versions
of an object and is a directed relationship. It has two pre-defined stereotypes.

The Generalization relationship is a “taxonomic relationship between a more
general element and a more specific element. The more specific element is fully



54 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

consistent with the more general element (it has all its properties, members
and relationships) and may contain additional information.” It is “a subtyping
relationship (i.e. an Instance of the more general GeneralizableElement may be
substituted by an Instance of the more specific GeneralizableElement)” [1] (p2-
34). It has one stereotype, �implementation� which is all Generalization is
minus the support for the interface and for substitutability (see Fig. 5(b)). It
therefore violates its own metasupertype’s axiomatic definition!

Bird

Bat

(a)

Bird

Bat

(b)

<<implementation>>

Plus OCL to
negate egg-laying,
feathers etc. features
of Bird

Fig. 5. Modelling Bat as a subclass of Bird because both can fly: (a) using
OML, implementation (or white box) inheritance is used directly where this
relationship is a subtype of Inheritance and a peer of Generalization; and (b)
using UML, implementation inheritance is a stereotype of Generalization which
means that, de facto, it has the same properties as its superclass, Generalization.
Unwanted features of Generalization have then to be negated away by use of
appropriate OCL constraints.

Link and Transition are also shown in Fig. 4. While these are not part of
the Core package’s Relationship hierarchy, they are intimately connected (as are
Include and Extend from the Use cases package). A Link is simply an instance
of an Association. It is a subtype of ModelElement in UML Version 1.3, not of
Relationship. The Transition metatype is also a subtype of ModelElement but in
this case it would appear from the UML documents [1] (p2-132) that it should in
fact be a subtype of Relationship since it is defined to be “a directed relationship
between a source state vertex and a target state vertex” in the state machine
metamodel.

Rôles in UML have two meanings: (i) as a label on the AssociationEnd or
(ii) as AssocationRole, AssociationEndRole or ClassifierRole in the collaboration
diagram. As a label on the AssociationEnd it is “a name string near the end of



Viewing the OML as a Variant of the UML 55

the path” [1] (p3-61); a concept which does not seem to be supported in the
metamodel itself. In the collaboration diagram, the classifier rôle describes how
a specific participant (interface) in a collaboration may play a specific rôle. It is
effectively a viewpoint on an object in the specific context of the collaboration in
question. A ClassifierRole thus defines a set of Features which are themselves a
subset of those in the base Classifiers. AssociationRoles and AssociationEndRoles
are the corresponding usages of Associations/AssociationEnds in the context of
a collaboration. The two different meanings of rôle are described in [13] (p414)
as the static and dynamic aspects of rôles.

In summary, the fragments of the UML metamodel1, described above, to
which OML offers extension or modification, relate to the focal points of (a)
class/type/interface metamodel structure, (b) responsibilities, (c) relationship
hierarchy — especially aggregation relationship, inheritance stereotypes and de-
pendencies and (d) rôle modeling.

3.2 OML

OML is characterized by a balanced use of use cases, responsibilities and rôle
modeling. In OML, all relationships are unidirectional to preserve encapsula-
tion/information hiding [15]. Stereotypes are used similarly to UML.

CIRT

Class
Object

(Instance)
Role

Association
Attribute

Assertion/
Constraint

Operation

Characteristics
(visibility)

Generalizable
Element

encapsulates/
exports

Responsibility
has implemented 

by

Type
(interface)

Property

Exception Entry Link Part

Pre-
condition

Post-
condition

Invariant

Member

MethodSignature

+

is-implemented-by
instance

of

implements

instance of

Fig. 6. OML Version 1.1 metamodel — incomplete fragment of the static archi-
tecture with the same scope as Fig. 2

Fig. 6 shows the core elements of the static metamodel, laid out in the same
way as Fig. 2 for ease of comparison. Ignoring terminological differences, we
note strong similarity except that the CIRT supertype is concrete (with its own
1 We restrict our discussion here to aspects of the static, architectural components of

both the UML and OML metamodels.



56 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

notation) and its subtypes are not identical to those of the UML Classifier. CIRT
stands for Class or Instance or Rôle or Type. While Class and Type map roughly
to UML’s Class and Interface, the three UML subtypes of Datatype, Node and
Component are missing (but could easily be added or retained as stereotypes)
and OML has two subtypes NOT in the UML metamodel: Instance (Object)
and Rôle. In strict metamodeling2, Instance and Type/Class would not appear
in the same Mx layer (Fig. 1). On the other hand, the appearance of Rôle as a
subtype of CIRT is purposeful since there is a need to support rôle modeling in
the class diagram as well as in the collaboration diagram. Also of note in Fig. 6
is the fact that OML eschews the ideas of AssociationClass and AssociationEnd
as distinct metaclasses.

The structure of the Feature/Characteristic hierarchy is also richer in OML.
Property has more than the single subtype of Attribute as in UML (Fig. 2). These
other subtypes relate to the more extensive use of association and aggregation
modeling in OML (see below).

A very important metaclass in OML is that of Responsibility (Fig. 6). Clas-
sifiers/CIRTs have high level responsibilities each of which is linked to/realized
by one or more features (which may be structural or behavioural). Responsibil-
ities are adopted from the work of [7] and carry significant semantics — unlike
the responsibility notion in UML which is a stereotyped comment in Version 1.3
(tagged value applied to Classifier in Version 1.1).

1-*

implements

Class

Type

0-*

Class
Implementation

+

is implemented by

Fig. 7. In OML, the definitional relationship between Class, Type and Class
Implementation is that of aggregation not inheritance

In OML, Types and Interfaces are not strongly differentiated in the meta-
model. A Type is defined [2] (p17) to be a declaration of visible characteristics

2 Neither UML nor OML employ strict metamodeling.



Viewing the OML as a Variant of the UML 57

(= UML Features) that form all or part of the interface. This set of charac-
teristics defining the type is therefore a subset of those defining the interface.
In OML, it is not only objects and classes that can have interfaces but also use
cases, packages etc. Thus if a class has a single type, type is identical to interface.
Since one (type) is a subset of the other (interface), only one concept (metaclass)
is retained in the OML metamodel. This is in contrast to UML where a set of
operations define a service. This set is called the Interface, which is roughly
analogous to Type in OML.

Object Class

CIRT Role

An abstract or deferred class has a dotted outline

Class 
Implementation

Type

Fig. 8. Stereotypes in UML may be given their own graphical icons. Here are
some of those suggested in OML

Secondly, since Type in OML is the declaration of the external view or specifi-
cation, and since the full Interface consists of one or more Types3, then Interface
can be considered as redundant and the totality of the Class is in fact a combina-
tion (or aggregation) of this Type and its Class Implementation (Fig. 7). Thus,
instead of generalization, OML uses aggregation to link together the concepts of
Type (inclusive of Interface), Class and Class Implementation (Fig. 7 compared
to Fig. 3). In the OML notation, the various stereotypes of Fig. 3 are all given
icons, as permitted within the OMG standard (Fig. 8). These were chosen based
on semiotic4 principles to make learning easier and more intuitive.

The original relationship metamodel for OML made a clear distinction be-
tween four sets of relationships: referential and definitional (as used in class
diagrams/semantic nets), transitional (state models) and scenario (use cases di-

3 The use of the names Type and Interface in UML and Java is opposite to that in
OML

4 The study of signs and symbols



58 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

Metamodel
leads to
arrow styles

BINARY
UNIDIRECTIONAL
DEPENDENCY
RELATIONSHIP

DEFINITIONAL
RELATIONSHIP

CLASSIFICATION
RELATIONSHIP

INHERITANCE
RELATIONSHIP

REFERENTIAL
RELATIONSHIP

TRANSITIONAL
RELATIONSHIP

STATE
TRANSITION

IMPLEMENTATION
RELATIONSHIP

SCENARIO
RELATIONSHIP

PRECEDES USES

INVOKES
+label +label

SPECIALIZATION
(A KIND OF)

INTERFACE
INHERITANCE
(SUBTYPING)

IMPLEMENT-
ATION
INHERITANCE

is an 
instance
of LINKAGE

ASSOCIATION

AGGREGATION

+

CONTAINMENT
U

MEMBERSHIP

WHOLE-PART
RELATIONSHIP

three
subtypes

two
subtypes

five
subtypes

ε

Fig. 9. Fragment of the OML metamodel hierarchy showing all relationships —
updated from [2] to Version 1.1 based on [9]

agrams etc.). In turn, these four metaclasses have a number of subtypes (Fig. 9).
Of specific interest here are

• all relationships are binary and unidirectional
• all relationships are dependency relationships (tying in with their unidirec-

tionality)
• aggregation (Fig. 10), membership and containment are clearly defined sub-

types of association
• there are three types of inheritance relationship: generalization/specialization

(a-kind-of), interface (blackbox or subtyping) and implementation (white-
box) — all peers.

Since all relationships are unidirectional, they are arrowed to indicate the
direction of dependency. Thus associations have a single direction which means
that an unarrowed association can be given the meaning of “TBD” (to be de-
cided) — a useful modeling tool when doing rapid analysis and design sketches
of the emerging model. Additionally, bidirectional relationships are only a short-
hand for a pair of unidirectional relationships that are semi-strong inverses of
each other. The iconic representation of the three specific subtypes of Association
(Membership, Containment and Aggregation) offers visual differentiation. The
black and white box on two of the subtypes of inheritance is another valuable
visual reminder (Fig. 5(a)).

OML’s specialization inheritance (Fig. 9) is in full agreement with the UML
definition of Generalization (see Sect. 3.1). However, generalization is only one
kind of “inheritance”, the others being interface inheritance and implementation



Viewing the OML as a Variant of the UML 59

Car

Wheel

(a)

Car

Wheel

(b)

{whole}

{part}

Plus OCL
to add
configurational
and separable

+

{separable}

Fig. 10. Modelling the commonest type of whole–part relationship: (a) directly
in OML using the configurational symbol (plus in a circle) and the {separable}
stereotype; (b) in UML — because neither black nor white diamond can be
used to describe a configurational/separable whole–part relationship, it has to
be constructed from a regular association to which is added: (i) a {whole} and
a {part} constraint, (ii) a navigability arrow and (iii) some OCL constraints to
make the association both configurational and (iv) separable.

inheritance (Fig. 5(a)) — although in practice the first two are often purposefully
confounded. These three (or pragmatically two) form a partition of an (abstract)
superclass in the metamodel (called Inheritance Relationship in Fig.9).

4 The UML Extension Mechanism

The three extension mechanisms available in UML are stereotypes, tagged values
and constraints. Some of OML’s characteristics could possibly be re-expressed
with stereotypes. In particular, Table 1 shows the necessary stereotypes together
with the metamodel class which they extend in OML.

Although defined at the model or M1 level, a stereotyped class can thus be
thought of as a “virtual” or “pseudo” M2 class which partitions an existing M2
metaclass. In other words, we might describe a stereotype as creating an implicit
user-defined metasubtype.

Thus, OML requires a stereotype �rôle� for Classifiers to permit their use
in Class diagrams as well as the existing support in Collaboration diagrams —
although a new M2 metasubtype would be much more powerful.

OML has three distinctive kinds of inheritance which could be given stereo-
types. The problem here is that specialization, specification and implementation



60 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

Table 1

Metamodel Class Stereotype (submetaclass)

Class Rôle

Generalization White box inheritance
Black box inheritance
Specialization

Association Whole–Part (WP) Relationship

WP Relationship Configurational (a.k.a. aggregation)
Membership

Association Containment

inheritance really create a single partitioning rule i.e. they should be peers, to-
gether with an abstract supertype. To create this in UML would require a variant
not an extension (see Sect. 5).

OML has strong support for “aggregation” (configurational whole–part (WP)
association relationship) and “membership” (non-configurational WP relation-
ship). One possible way to represent these using stereotypes would be to add a
�WPRelationship� stereotype to Association (with aggregationKind set equal
to none) from which two additional stereotypes of �configurational� and
�membership� could be created. The third new Association type, Contain-
ment, is then a stereotyped Association. On the other hand, a more semantically
powerful representation in the metamodel is discussed in Sect. 5 using the idea
of a UML variant.

In addition to showing the stereotypes of Table 1 as keywords in guillemets,
we recommend the following new icons: rôle: Greek tragedy mask (Fig. 8); kinds
of inheritance: white and black box options (Fig. 9); WP relationship: annota-
tions at client end of relationship (Fig. 9); and Containment: annotation at client
end of relationship (Fig. 9).

In conclusion, whilst some of OML’s constructs can be readily represented
as stereotypes, many of these can more cleanly use the variant ideas supported
in UML.

5 OML as a UML Variant

In this section, we describe the OML model elements which cannot be simply
created at the model level (M1) by judicious use of user-defined stereotypes.
Instead, the metamodel (M2) requires modification, thus creating a UML variant.

5.1 Responsibilities

In OML (Fig. 6), a CIRT has Responsibilities which are implemented by Char-
acteristics. In the variant version of UML, we introduce a new metaclass called
Responsibility which has a meta-association to Classifier and a meta-association
to Feature (Fig. 11 which shows the relevant fragment of Fig. 2, updated in this



Viewing the OML as a Variant of the UML 61

way.) This replaces the current UML responsibility which is (a) a stereotyped
comment with no semantics and (b) confused with the notion of a contract e.g.
[11,16].

Classifier
Feature

(visibility)

1

11..*

1..*

Responsibility

has

is
implemented
by

Fig. 11. Addition of Responsibility metatype to UML variant

Notation for responsibilities is already available in UML (adopted from OML:
[17]). Responsibilities are documented in a fourth box on the class icon. What
is required (see below) are well-formedness rules to ensure that the Class–
Responsibility–Operation links are correct.

5.2 Aggregation

Although we have shown in Sect. 4 how whole–part relationships can, to some
degree, be represented by the use of stereotypes in a UML extension, a cleaner
model can be derived by judicious modifications to the metamodel itself. The
following changes would be needed:

• in the AssociationEnd metaclass, the aggregation: aggregationKind meta-
attribute should be erased.

• the introduction of a new metaclass called Whole–Part (WP) Relationship.
While this can be regarded as a kind of Association, it is important that it
inherits from a unidirectional relationship rather than from the bidirectional
Association metaclass. This suggests that, despite the clear is-a-kind-of con-
nection between it and the Association metaclass, the new WP Relationship
metaclass might best inherit from either Dependency or Relationship.

• the addition of two new subtypes of Whole–Part Relationship metaclass: (a)
Configurational and (b) Membership

• the introduction of a new subtype of Association called Containment

Annotation for whole–part and containment relationships are given already
in OML. These could be used “as is” (Fig. 9). The Whole–Part Relationship
metaclass also needs additional well-formedness rules. These would formally ex-
press the mandatory existence of (i) emergent property, (ii) resultant property,



62 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

(iii) irreflexivity and (iv) asymmetry ([18]). In addition, careful formal definition
of containment, which is not a whole–part relationship, is needed — again we
encourage the evaluation and derivation of appropriate well-formedness rules.

5.3 Type/Class/Interface

1-*

realizes

Class

Type
(UML Interface)

1-*

Class
Implementation

+
Interface

(UML Type)

1-*

has attributes and 
operations

has operations

has attributes,
operations and
methods

Classifier
(a)

1-*
realizes

Class

Type
(UML Interface)

1-*

Class
Implementation

+

has signature(s)

has attributes,
operations and
methods

Classifier(b)

Fig. 12. Aggregation relationships between Class, Type and Class Implementa-
tion linked into the UML architecture involving Interface and Classifier meta-
classes

The tidiest way to improve the metamodel of Fig. 3 would be a full revision
using correct Generalization relationships. In making such a drastic change it
might be better to totally revise this fragment of the metamodel. One suggestion
is given in Fig. 12(a). It can be seen that a Class is made up from the speci-
fication (or Interface) which consists of several Types together with the Class
Implementation. If required, an (OML) Interface is then equal to one-to-many
Types5. However, a better model (Fig. 12(b)) might be one in which Type and
5 This means that an alternative, but equivalent, model could be drawn in which a

Class is made up of a single Interface plus one-to-many Class Implementations



Viewing the OML as a Variant of the UML 63

Interface are fused together. This metaclass then has one or more signatures (no
operations and no attributes).

If an inheritance hierarchy is preferred, then initially it seems possible to
make an Interface (UML Type) to inherit from (Generalization relationship)
Type (UML Interface) since a UML Interface has operations while a UML Type
has not only operations (and their corresponding signatures) but also attributes.
However, since Fig. 12 shows that an Interface (UML Type) is equivalent to
one-to-many Types (UML Interfaces), a Generalization relationship is clearly
inappropriate. Yet the need for a Classifier metaclass remains. However, for it to
be a supertype of Interface, Type and Class (as is probably deemed preferable),
the definition of Classifier needs to be modified. At present, a Classifier, like
a Class, contains attributes, operations and methods. We propose that these
elements are deferred to the Class, such that a Classifier is more of a place holder
as an abstract class in the hierarchy, representing just that: model elements that
represent the abstraction technique known as classification. If the hierarchy is
constructed in the way suggested by Fig. 12, then all inheritance relationships
are truly generalization and the purity of the metamodel (i.e. being defined using
its own rules) is obtained.

It should be noted, however, that in a sophisticated metamodel such as the
UML metamodel, there are likely to be other complications resulting from such
a change. Nevertheless, so far as the OML variant of UML is concerned, this
slight modification to Fig. 3 does result in an acceptable and usable definition
of Class, Type and Interface — although it should also be noted that the names
of Type and Interface in Fig. 12 are UML nomenclature and there is still the
terminological argument between “interface” and “type” in the more general OO
modeling community.

5.4 All Relationships Are Dependencies

While the original (Version 1.0, 1.1) relationship metaclasses were distinct, in
UML Version 1.3 a partial unification has taken place as shown in Fig. 4. As
well as requiring Transition to inherit from Relationship rather than ModelEle-
ment6 in OML, some discussion of Association and Dependency is needed. In
UML, Association is bidirectional and the others (apart from some subtypes) are
unidirectional. In OML, all relationships are binary (whereas ternary are permit-
ted in UML’s associations), undirectional and dependency relationships. Thus,
rather than use Association as the base class, the OML variant will focus on
Dependency (which is already unidirectional). From this will be constructed the
model elements of Fig. 9. The major elements of OML are shown in Fig. 13. The
UML Dependency and Relationship metaclasses are fused together into the root
Dependency Relationship metaclass (abstract) and the newly introduced Refer-
ential Relationship is an abstract metaclass acting as a place-holder. To avoid
6 We presume this is an error in the Version 1.3 draft documents since the text sug-

gests that in UML V1.3 it was always intended that Transition should inherit from
Relationship not from ModelElement as shown in the metamodel.



64 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

Dependency
Relationship

Inheritance

Referential
Relationship

Mapping/
Association

Aggregation

Containment

Membership

Whole-Part
Relationship Generalization/

Specialization
(a kind of)

Interface
inheritance
(subtyping)

Implementation
inheritance
(subclassing)

Fig. 13. Suggested OML variant structure for relationships which take the UML
Relationship hierarchy of Fig. 4 but refocus on Dependency, ignoring Association
and AssociationEnd, and introducing a new Whole-Part Relationship together
with its subtypes. Similarly, three subtypes of inheritance are used such that
the Generalization metaclass becomes an abstract class, renamed Inheritance
for clarity

name clashes in the namespace, OML Association has been renamed Mapping.
Association and AssociationEnd are thus not part of the OML variant of UML.

6 Conformant and Non-conformant Variants

The basic premise of a UML variant is that additions should be made at the M2
level. It is implicit that these are additions as opposed to changes. Some of the
suggestions in Sect. 5 fall into this category. However, other suggestions require
changes rather than additions at the M2 level. We may wish to discriminate
between these two uses of the word variant by qualifying them. The first we will
call a conformant variant and the second a non-conformant variant. The ideas
to improve the relationship and type/class architectures fall into this second
class of non-variance. On the other hand, it is feasible to use the existing UML
constraint mechanism to eliminate or modify existing metaclasses — in which
case the conformant/non-conformant discrimination vanishes. Nevertheless, we
will, for the present, label OML as a non-conformant variant of UML — although
it contains elements which are extensions and elements which are conformant
variants as well.

The possibility of adding the idea of a non-conformant variant to the UML
permits evolution in a more flexible fashion than the two current extension mech-
anisms which both insist that every fragment of the current UML is “correct”



Viewing the OML as a Variant of the UML 65

and inviolate. The difficulty in adhering to this strict requirement is evidenced
by the significant non-conformant changes made to the original UML metamodel
by the Revisionary Task Force (RTF) — for instance the welcome addition of
the Relationship metaclass in Version 1.3 (not seen in Version 1.1) and the to-
tal revision of the use case association types in Version 1.3 (now stereotyped
Dependencies rather than the stereotyped Generalizations of Version 1.1).

A major area of concern remains in the use of Generalization relationships
in the diagrammatic, and therefore semantic, definition of the UML metamodel.
The definition is good but the use of it is clearly seen to be incorrect. It is vital
that (non-conformant) checks of all uses of Generalization in the UML Ver-
sion 1.3 metamodel be made (in preference to “patches” involving overwriting
constraints) and, once a consistent definition of black and white diamond aggre-
gation has been accepted (see, e.g., suggestions of [20]), the uses of aggregation
and composition also need to be carefully examined in the metamodel definition.

Thus the introduction of the idea that suggested changes to the UML meta-
model may in fact be non-conformant variants (i.e. improvements to the meta-
model which extend and at the same time change/correct it) could be very
valuable in both tightening up the UML and also creating a path forward for its
future evolution.

7 Summary and Conclusions

A comparison of specific fragments of the published UML and OML metamodels
has permitted us to identify the new stereotypes and metamodel changes neces-
sary to permit the OML to be viewed as a UML variant. Finally, we discussed
the potential for the introduction of both conformant and non-conformant vari-
ants. Non-conformant variants open up the opportunity for true evolution of the
UML. OML is one possible step in that direction.

References

1. OMG: OMG Unified Modeling Language Specification (draft), Version 1.3 al-
phaR2, January 1999 (unpubl.) (1999)

2. Firesmith, D., Henderson-Sellers, B., Graham, I.: OPEN Modeling Language
(OML) Reference Manual, SIGS Books, New York, 276pp (1997); Cambridge Uni-
versity Press, New York (1998)

3. OMG: UML Extension for Objectory Process for Software Engineering. Version
1.1, 1 September 1997. OMG document ad97-08-06 (1997)

4. Atkinson, C.: Supporting and applying the UML conceptual framework. Procs.
�UML�’98 (1998) 1–11

5. Henderson-Sellers, B.: OML: proposals to enhance UML. Procs. �UML�’98
(1998) 319–329

6. Henderson-Sellers, B., Firesmith, D.G.: Comparing OPEN and UML: the two third
generation OO development approaches. Inf. Software Technol. 41 (1999) 139–156

7. Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software,
Prentice Hall, Englewood Cliffs, NJ, 368pp (1990)



66 Brian Henderson-Sellers, Colin Atkinson, and Don Firesmith

8. Meyer, B.: Eiffel: The Language, Prentice Hall, New York, 594pp (1992)
9. Firesmith, D.G., Henderson-Sellers, B.: Upgrading OML to Version 1.1: Part 1.

Referential relationships. JOOP/ROAD 11(3) (1998) 48–57
10. Henderson-Sellers, B., Firesmith, D.G.: Upgrading OML to Version 1.1: Part 2 —

Additional concepts and notations. JOOP/ROAD 11(5) (1998) 61–67
11. Wirfs-Brock, R.J.: Adding to your conceptual toolkit: what’s important about

responsibility-driven design. Report on Object Analysis and Design 1(2) (1994)
39–41

12. Brachman, R.J.: “I lied about the trees” or, defaults and definitions in knowledge
representation. The AI Magazine 6(3) (1985) 80–93

13. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, Addison-Wesley, Reading, MA, 550pp (1999)

14. OMG: UML Notation. Version 1.1, 15 September 1997. OMG document ad/97-08-
05 (unpubl.) (1997)

15. Graham, I.M., Bischof, J., Henderson-Sellers, B.: Associations considered a bad
thing. J. Obj.-Oriented Programming 9(9) (1997) 41–48

16. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10) (1992) 40–51
17. Booch, E.G.: public communication, Sydney, 19 April 1999
18. Henderson-Sellers, B., Barbier, F.: What is this thing called aggregation?.

TOOLS29 (eds. R. Mitchell, A.C. Wills, J. Bosch and B. Meyer), IEEE Computer
Society Press (1999) 216–230

19. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, Addison-Wesley, Reading, MA, USA, 482pp (1999)

20. Henderson-Sellers, B., Barbier, F.: Black and white diamonds. Procs. �UML�’99,
Fort Collins, CO, October 1999 (1999), this volume


	Introduction
	The History of OML and Future Contributions to the UML
	Key OML and UML Metamodel Fragments
	UML
	OML

	The UML Extension Mechanism
	OML as a UML Variant
	Responsibilities
	Aggregation
	Type/Class/Interface
	All Relationships Are Dependencies

	Conformant and Non-conformant Variants
	Summary and Conclusions

