
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5. No. 2, March-April 2006

Cite this article as follows: Donald G. Firesmith: “Architecture-Related Requirements”, in Journal of
Object Technology, vol. 5, no. 2 March-April 2006, pp. 63-73
http://www.jot.fm/issues/issue_2006_03/column7

Architecture-Related Requirements
Donald Firesmith, Software Engineering Institute, U.S.A.
Peter Capell, Software Engineering Institute, U.S.A.

Abstract
The engineering of architecture-related requirements has proven to be a very difficult
task for requirements engineers. It is also a task that experience has shown could use
significant improvements in practice. These requirements are critically important
because they drive the development of the system and software architectures, which in
turn largely determine if major product qualities are adequately achieved. They also
form the basis against which the architectures are assessed. In this column, we
describe the three major kinds of architecture-related requirements, discuss the most
important characteristics they should have, describe the responsibilities of their
stakeholders, and warn of the major negative consequences they can have on
downstream activities when they are not properly engineered.

1 INTRODUCTION

We have recently been supporting the assessment of the architecture of an extremely
large and complex software-intensive system of systems. As with any other system, its
architecture is primarily driven by its requirements. Of course not all requirements are
equally important in their impact on a system’s architecture. Some individual
requirements have a major influence on the architects’ choices, whereas other
requirements will not change the architecture. Finally, although the writing of this
column has been inspired by our participation in the architecture assessment, the issues
raised are pervasive in all systems. In fact, the challenges in our experience occur in most
projects from the development of the smallest software application to extremely large and
complex systems of systems being attempted. Inadequate specification of architecture-
related requirements has influenced other known methods of assessing the quality of
software architectures [Clements et al. 2002]. The problem of inadequate architecture-
related requirements begins with requirements engineering and is primarily the
responsibility of requirements engineers to solve.

In this issue, we take up the issue of architecture-related requirements. What are they
and how do they differ from other requirements? Are there different kinds of architecture-
related requirements? What are the key characteristics of such requirements, and what are
the negative consequences when such requirements are inadequately specified or not

ARCHITECTURE-RELATED REQUIREMENTS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

specified at all. Who are the different types of stakeholders of such requirements, and in
what way are such requirements important to them?

2 ARCHITECTURE-RELATED REQUIREMENTS

As the name implies, architecture-related requirements are those requirements that
have a significant impact on the architecture of a system. At the highest level of
abstraction, these can be classified as:

• Quality Requirements. A quality requirement is a requirement specifying that a
system must have a minimum required amount of a specific quality [Firesmith
2003b]. Quality requirements specify a minimum level of a quality factor such as
affordability, availability, capacity, configurability, correctness, efficiency,
extensibility, interoperability, maintainability, modifiability, performance,
portability, producibility, reliability, reusability, robustness, safety, scalability,
security, stability, sustainability, testability, and usability. A quality requirement
specifies that under certain conditions, the system or subsystem shall exhibit a
quality criterion demonstrating that one or more associated quality subfactors
exist beyond a minimum threshold on an associated quality measure. For
example, the following is an example of a quality (performance) requirement:
“When not in degraded mode (condition), the mortgage processing system shall
correctly process mortgage applications (quality criterion) with a throughput
(performance quality subfactor) of at least 100 applications per second (threshold
on quality measure).” On a requirement-by-requirement basis, quality
requirements tend to have an inordinate influence on the architecture, much more
than typical functional, data, or interface requirement.

• Architecturally-Significant Requirements. These are functional, data, and
interface requirements that implicitly have a significant impact on the
architecture. For example, the primary functional requirements associated with a
major system function tend to have a major influence on system architectures
because many systems are functionally decomposed into subsystems. On the other
hand, functional requirements tend to have less of an impact on software
architectures because they are often decomposed along different lines using
software architecture patterns and different methods (e.g., object-orientation).

• Architecture Constraints. An architecture constraint is an architecture decision
that is mandated on the architects as if it were a normal requirement. By its very
nature as a mandated architectural choice, this kind of constraint clearly
influences the architecture and thus meets the definition of an architecture-
relevant requirement.

VOL. 5. NO.2 JOURNAL OF OBJECT TECHNOLOGY 63

Key Characteristics of Architecture-Related Requirements

Properly-engineered requirements exhibit widely agreed-upon characteristics [Firesmith
2003a], and the following characteristics are therefore particularly important to the
engineering of architecture-relevant requirements:

• Complete. In order to be considered “complete,” requirements are written using
systematic methods designed to express all relevant preconditions, (e.g. system
modes, environmental states, and operational profile) under which the
requirement is operative. Quality requirements also need to include quality criteria
that describe the system in terms of some quality factor or subfactor as well as
some minimum threshold on an associated quality measure. At an architectural
level, incomplete requirements pose a number of risks such as invisible
architecture-related implications, untraceable component failure modes,
unanticipated requirements conflicts discovered downstream, and so on.

• Feasible. The feasibility of architecture-related requirements involves
understanding what constraints a single requirement might have as a cascading
consequence to the entire system. When vague goals such as “The system shall be
reliable, safe, and secure” are incorrectly specified as requirements, they are
inherently infeasible because no system is 100% reliable, safe, or secure no matter
what architectural decisions are made.

• Unambiguous. Ambiguity in architecture-related requirements creates
unnecessary conflict among stakeholders who will each have their own idea of
what the requirement means. For example, unless a quality requirement
quantitatively specifies exactly how much quality is “adequate,” then there is a
high risk that the customer, requirements engineer, architect, and tester will
disagree as to the acceptability of the system and its architecture.

• Verifiable. Like all other requirements, architecture-related requirements should
be verifiable via such traditional approaches as testing, demonstration, analysis,
and inspection. Just because it is more difficult to verify some types of
architecture-related requirements such as certain quality requirements, that is not
an adequate reason to allow unverifiable requirements. If you cannot verify it, you
do not know if you have met it. If you cannot verify architecture-related
requirements, you do not know if you architecture is sufficient.

• Validatable. Requirements must be validatable in terms of the needs and desires
of their stakeholders. Architecture-related requirements are in this respect no
different except that their validation becomes a matter of system-wide concern
where validity must be assessed across all major subsystems and their sub-
subsystems.

3 STAKEHOLDERS OF THE REQUIREMENTS

Because of their critical role in the quality and acceptability of systems, architecture-
related requirements are important to many different stakeholders, although in different

ARCHITECTURE-RELATED REQUIREMENTS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

ways and for different reasons. Specifically, the main stakeholders of architecture-related
requirements are:

• Requirements providers, who are responsible for providing and validating
architecture-related requirements of the system being specified.

• Requirements engineers, who are responsible for engineering them
• Requirements evaluators, who are responsible for evaluating their quality
• Architects, who are responsible for ensuring that their architectures sufficiently

support them
• Architecture assessors, who are responsible for assessing the architecture against

its support for them
• System integrators, who are responsible for passing on the architecture-related

requirements to subcontractors who must supply the corresponding architectural
components

• Independent testers, who are responsible for integration and system testing of
the resulting architectural components

In the following sections, we define these roles and provide a snapshot of the problems
that can arise when persons performing these roles fail to properly fulfill their assigned
responsibilities.

Requirements Providers

Requirements providers (i.e., stakeholders such as customers, marketing representatives,
sales representatives, user representatives, operators, user support engineers, etc.) have
the following responsibilities with regard to architecture-related requirements:

• Provide requirements. These people must clearly state all of their needs that will
significantly impact the systems’ architecture. Especially important are necessary
system qualities because the architects’ major decisions will either enable the
achievement of these system characteristics or make their achievement difficult if
not impossible. Only these stakeholders can determine what system qualities the
system must exhibit. And it is these system characteristics that will largely drive
the development of the architecture.

• Provide architecture constraints. Systems do not exist in a vacuum. Few
systems are truly “green field”; most are new versions of existing systems.
Similarly, systems are typically deployed into existing environments and must
interoperate with existing systems. Systems are often maintained by the acquiring
organization, which has expertise in certain technologies. All of these are
legitimate reasons for the customer to mandate architecture constraints on the
development organization.

• Validate requirements. People who are sources of the architecture-related needs
are also the people who typically must validate the correctness of the resulting
requirements.

• Architecture oversight. Customer representatives often have oversight
responsibilities with regard to system development. This typically includes

VOL. 5. NO.2 JOURNAL OF OBJECT TECHNOLOGY 65

exercising due diligence in the oversight of the development of the system
architecture and insuring its quality.

• Accept the system. Once the system is built, the customer representatives
typically must accept the system based on its fulfillment of its associated
requirements including architecture-related requirements.

If the people who provide requirements fail to meet their responsibilities with regard to
architecture-related requirements, then the following negative consequences can be
expected:

• Provide requirements. Being neither requirements engineers nor architects, it is
not easy for these people to provide architecture-related requirements. In fact,
they will rarely if ever think of requirements in that manner. Although quality
requirements are typically quite important to them (especially if the requirements
are obvious, such as many interoperability and performance requirements), they
often have a difficult time making such requirements unambiguous, feasible, and
quantitative with minimum acceptable thresholds. Also, not being architects or
engineers, they often have no concept as to the ramifications of their requirements
in terms of cost and schedule. Thus, they may confuse unreasonable desires with
mandatory requirements. Similarly, they can misidentify unnecessary constraints
as necessary requirements (see next bullet).

• Provide architecture constraints. Although there are many valid reasons for
stakeholders to mandate architecture constraints, there are also many invalid
reasons. For example, they may mandate an architecture decision because it is the
only option that they are familiar with, thereby unnecessarily tying the architects’
hands. Ultimately, there are three potential problems:
⎯ Missing valid architecture constraints,
⎯ Poorly provided valid constraints (e.g., incomplete or mistaken constraints),

and
⎯ Inappropriately specified constraints.

• Validate requirements. Because people often make implicit assumptions and
take certain things for granted, stakeholders will often not realize that important
architecture-related requirements are missing or incompletely specified. It can
take an experienced requirements engineer to elicit this information that a subject
matter expert considers too obvious to mention.

• Accept the system. The system qualities that are important to the people who
provide system requirements are most obvious when they are missing. Similarly,
although they may have a very hard time during requirements elicitation telling
requirements engineers just how much of different quality factors their system
must have, they are often quite capable of pointing out to the development
organization that the system is not good enough. Thus, a lack of well-engineered
architecture-related requirements can easily lead to a system that technically
meets its requirements but which is not acceptable to its stakeholders.

ARCHITECTURE-RELATED REQUIREMENTS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

Requirements Engineers

Requirements engineers have the following responsibilities with regard to architecture-
related requirements:

• Identification. Requirements engineers must identify all of the requirements that
are relevant to the architecture. Given the natural emphasis on functional
requirements and the requirements engineer’s limited resources for performing
requirements identification (e.g., elicitation, invention, and derivation), such
requirements are all too often never identified. This is especially true of quality
requirements, which tend to be missing or difficult to identify in customer or
higher-level requirements documents. Thus, a key responsibility of requirements
engineers is to derive the appropriate architecture-relevant requirements when
engineering the requirements for individual subsystems of the system.

• Analysis. Requirements engineers must analyze requirements to ensure that they
have the necessary characteristics of good requirements. Thus, requirements
engineers are responsible for ensuring that the requirements are complete,
consistent, feasible, mandatory, unambiguous, and so on.

• Specification. Requirements engineers must properly specify the architecture-
relevant requirements so that the other stakeholders of these requirements can
read them.

• Verification. Requirements engineers should verify the derivation of architecture-
related requirements from higher-level goals, concepts of operations,
requirements models, and requirements. They should also verify the consistency
of these requirements with requirements conventions such as standards for
requirements structures and contents.

• Validation. Requirements engineers should validate the architecture-related
requirements with the stakeholders that are their sources.

• Management. Requirements engineers must store the requirements, provide
appropriate metadata, maintain them under configuration control, and freeze them
at the appropriate time so that architecture, design, and implementation can be
completed and so that the current version of the system can be released.

If requirements engineers fail to meet their responsibilities with regard to architecture-
related requirements, the following negative consequences can be expected:

• Identification. Important architecture-related requirements may not be identified.
Missing requirements are hard to identify during requirements analysis,
verification, and independent evaluation. If the requirements are totally missing in
higher-level requirements specifications, specified in an incomplete or ambiguous
manner, or only implied by other requirements, then it becomes the requirements
engineer’s task to attempt to derive explicit subsystem requirements from implicit
system requirements – an inherently risk-laden job. If missing requirements fall
through the cracks, the architect is unlikely to adequately incorporate them into
the architecture and is unlikely to include them in engineering trade-offs between
conflicting requirements. Too often, lower-level requirements engineers and

VOL. 5. NO.2 JOURNAL OF OBJECT TECHNOLOGY 67

architects end up guessing the requirements because they are given inadequate
guidance.

• Analysis. All too often, the architecture-relevant requirements are inadequately
analyzed and end up not having the characteristics of good requirements. For
example, quality needs are often written as ambiguous, infeasible, and
unverifiable goals such as “the system shall have high reliability” or “the system
shall be safe” instead of as true engineering requirements.

• Specification. Many times, important quality requirements are specified in plans,
process documents, or specialty engineering documents (e.g., reliability plans or
safety policies) rather than in requirements specifications with the other
requirements. This tends to prevent the architect from knowing about them and
incorporating them into the architecture in a timely manner, resulting in
significant architecture rework, increased development costs, and slipped
schedules.

• Verification. Architecture-related requirements (especially quality requirements)
are often difficult to trace because they do not map easily to other requirements or
to architectural components. Because they tend to cut across many functional
requirements and architectural components, the mapping is typically many-to-
many, cluttering up the requirements traceability matrices and making them
difficult to develop and maintain. Many specified quality requirements and other
architecture-relevant requirements do not have the correct structure, ensuring that
they are incomplete and therefore ambiguous and unverifiable. For example,
quality requirements often do not specify the conditions under which they apply
or more importantly, do not provide a minimum threshold on an appropriate unit
of measure that specifies at which point the system would exhibit adequate
quality.

• Validation. It is notoriously difficult to pin down the requirements stakeholders
(e.g., customer and user representatives) as to just how much quality the
architecture must have. Too often, they do not know or they want “wiggle room”
to change their minds. The resulting “requirements” are often incomplete,
infeasible, and untestable1. The architect must guess how good is good enough in
order to complete the architecture and make engineering trade-offs, especially
among conflicting architectural goals.

• Management. Too often, architecture-relevant requirements are not identified as
such in the requirements repository, so that the architects have a difficult time
identifying them among the huge number of requirements that do not significantly
impact the architectures.

Given how often architecture-relevant requirements are either not engineered or else
inadequately engineered, requirements engineering with respect to architecture-related
requirements is often quite ineffective in practice.

1 They may state that “the system shall be reliable,” but not say how reliable or in what way. They may
state that “the system shall be safe and secure,” when it is impossible for any system to be totally safe or
totally secure. Finally, such “requirements” are inherently not testable with a finite number of tests.

ARCHITECTURE-RELATED REQUIREMENTS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

Requirements Evaluators

During the evaluation (i.e., quality engineering) of the requirements and their associated
specifications, requirements evaluators have the following responsibilities with regard to
architecture-related requirements:

• Quality control. Requirements evaluators must ensure that the architecture-
relevant requirements, the repository in which they are stored, and the
specifications that have been published all have adequate quality.

• Quality assurance. Requirements evaluators must ensure that the requirements
engineering process used to identify, analyze, specify, verify, validate, and
manage the architecture-related requirements has been properly followed and is
effective in producing architecture-related requirements of adequate quality.

If the requirements evaluators fail to meet their responsibilities with regard to
architecture-related requirements, the following negative consequences can be expected:

• Quality control. Missing and inadequately engineered architecture-related
requirements will not be found and are therefore unlikely to be remediable in a
timely and cost-effective manner.

• Quality assurance. Problems with the requirements engineering method that
have allowed architecture-related requirements to be inadequately engineered
have also not tended to be found in practice and therefore the problems continue.

Given how often that missing and inadequately engineered architecture-relevant
requirements are not identified during requirements evaluations, quality control and
assurance in this area is often quite ineffective in practice.

Architects

Architects have the following responsibilities with regard to architecturally-significant
requirements:

• Identification. If architecture-relevant requirements (or at least quality
requirements) have not been identified and tagged as such by the requirements
engineers, then the architects must identify them so that they can drive the
architects’ decisions and properly influence the resulting architecture.

• Allocate. The architects must properly allocate (and trace) the architecture-
relevant requirements to the associated architectural components (e.g.,
subsystems).

• Analyze. The architects must understand the ramifications of the architecture-
relevant requirements on their architecture. They must make engineering trade-
offs between the conflicting requirements in order to ensure a globally optimized
architecture.2

2 Locally optimizing architecture support for competing individual [types of] architecture-relevant
requirements (e.g., interoperability, reliability, safety, and security) can result in a globally suboptimal
architecture.

VOL. 5. NO.2 JOURNAL OF OBJECT TECHNOLOGY 69

• Incorporate. The architects must develop an architecture that adequately supports
the derived architecture-relevant requirements that have been allocated to their
part of the overall architecture.

• Verify. The architects must verify that their architecture adequately supports its
allocated architecture-relevant requirements.

The failure of others to meet their responsibilities upstream from architecture can
contribute to the architects failing to meet their responsibilities with regard to
architecture-related requirements, causing the following kinds of negative consequences:

• Identification. If the architects are unaware of all of the architecture-relevant
requirements allocated to their architecture, then these requirements will not drive
the architects’ decisions and properly influence the resulting architecture.

• Allocate. Missing requirements will be ignored by the architects and will
therefore not be properly allocated to the architectural components that should
implement them.

• Analyze. Ambiguous requirements will be difficult for the architects to
understand and analyze. Missing or inadequately specified architecture-relevant
requirements will not properly influence engineering trade-offs between different
potential architectures.

• Incorporate. When architecture-relevant requirements are missing or ambiguous,
the architect’s resulting architecture is unlikely to adequately support them.

• Verify. How can the architects be expected to verify that their architecture
adequately supports its architecture-relevant requirements if the requirements
have not been properly derived and allocated to appropriate architectural
components?

Architecture Assessors

Architecture assessors have the following responsibilities with regard to architecturally-
significant requirements:

• Understanding. The assessors are responsible for understanding the requirements
that drive the architecture they are assessing. This includes understanding the
ramifications the requirements have on the architecture, which often involves
significant experience as an architect, as a subject matter expert in the specialty
engineering area of the requirements (e.g., reliability, safety, or security), and in
the application domain of the subsystem being assessed (e.g., avionics, chemical
engineering, finance, or transportation).

• Assessment. The assessors are responsible for assessing the architecture’s support
for the architecture-related requirements that have been derived and allocated to
the architecture they are assessing.

The failure of others to meet their responsibilities upstream from architecture can
contribute to the architecture assessors failing to meet their responsibilities with regard to
assessing the architecture, which can cause the following negative consequences:

ARCHITECTURE-RELATED REQUIREMENTS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

• Understanding. The assessors are unlikely to know of and understand all of the
architecture-related requirements that should have driven the architecture.

• Assessment. The assessors be not be able to make a judgment as to whether the
architecture is adequate. The assessors cannot judge sufficient quality if they do
not understand how good is good enough because the relevant requirements are
either missing or inadequately engineered.

• Finger pointing. The architects can legitimately complain about a poor
assessment grade due to an assessment of inadequate architecture quality because
the requirements they are being assessed against were either not allocated to them
(scope creep) or else the requirements were ambiguous (and therefore subjective).
Subsystem requirements engineers can in turn point the finger at the requirements
engineers of higher-level subsystems or the system requirements engineers and
argue that higher-level requirements did not exist from which to derive the
requirements. Ultimately, the top-level requirements engineers can argue that they
did not receive any customer requirements from which to derive the architecture-
related requirements, something that is especially common with performance-
based contracts where general capabilities are required and the details (including
system requirements) are left to the contractor. Finally, the customer can argue
that the architecture-related requirements are implicit in the capabilities contracted
for and that it is the development contractor’s responsibility to identify and derive
them.

System Integrators

System integrators have the following responsibilities with regard to architecturally-
significant requirements:

• Subcontract requirements. The system integrators must pass on the allocated
architecture-related requirements to subcontractors or vendors who must supply
the corresponding architectural components.

• Subcontract oversight. The system integrators must exercise subcontract
oversight regarding further engineering of these requirements and their
incorporation into the corresponding architectural components.

The failure of others to meet their upstream responsibilities can contribute to the system
integrators failing to meet their responsibilities with regard to the architecture-related
requirements, causing the following negative consequences:

• Subcontract requirements. If the architecture-related requirements are not
passed on to the subcontractor or vendor, then the supplied architecture
component may not meet the requirement and may therefore be unacceptable.

• Subcontract oversight. Naturally, the same problems associated with customer
oversight apply here. In fact, poor subcontract oversight exacerbates the difficulty
of customer oversight of the prime contractor.

VOL. 5. NO.2 JOURNAL OF OBJECT TECHNOLOGY 71

Integration and System Testers

Testers have the following responsibilities with regard to architecturally-significant
requirements:

• Integration testing. Testers must find defects that potentially interfere with the
architectural components being successfully and incrementally integrated. This is
made difficult if relevant architecture-related requirements (e.g., intraoperability)
are not properly derived and allocated to the components being integrated.

• System testing. Testers must not only perform function testing based on the
system’s functional requirements; they must also test the architecture-related
requirements, which are often considerably more difficult and expensive to test.
For the quality requirements, this often calls for specialty-engineering tests such
as reliability testing, safety testing, security (e.g., penetration) testing, stress
testing (for capacity and scalability requirements), and usability testing.

The failure of others to meet their upstream responsibilities can contribute to the testers
failing to meet their responsibilities with regard to the architecture-related requirements,
causing the following negative consequences:

• Integration and system testing. Testers have a harder time developing
integration and system tests based on architecture-related requirements without
such properly engineered requirements.

4 CONCLUSION

Requirements that significantly impact the architecture of a system are very important to
the quality and acceptability of the system. Some of the most important of these
requirements are the quality requirements that specify a minimum level of quality that the
system must exhibit. Unfortunately, there is a myth that quality requirements are for the
most part unverifiable and testable, and this myth is a major reason why such
architecture-related requirements are poorly engineered if at all. It is a mistake for
requirements engineers to give up on engineering these requirements in order to avoid
wasting precious resources by trying to do the impossible. It is this complacency that
often prevents stakeholders and requirements engineers from learning how to properly
engineer quality requirements. And the resulting missing requirements and poorly
specified requirements have major consequences that negatively impact many important
stakeholders. We recommend the reader to read Tom Gilb’s latest book [Gilb 2005] that
provides excellent guidance on how to unambiguously and quantitatively specify quality
requirements.

ARCHITECTURE-RELATED REQUIREMENTS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

REFERENCES
[Firesmith 2003a] Donald Firesmith, “Specifying Good Requirements,” Journal of

Object Technology (JOT), 2(4), Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland, pp. 77-87, July/August 2003.
http://www.jot.fm/issues/issue_2003_07/column7

[Firesmith 2003b] Donald Firesmith: “Using Quality Models to Engineer Quality
Requirements”, in Journal of Object Technology, vol. 2, no. 5, September-
October 2003, pp. 67-75.
http://www.jot.fm/issues/issue_2003_09/column6

[Gilb 2006] Tom Gilb, Competitive Engineering: A Handbook for Systems
Engineering, Requirements Engineering, and Software Engineering Using
Planguage, Elsevier, 2005.

[Clements et al. 2002] Paul Clements, Rick Kazman, and Mark Klein, Evaluating
Software Architectures: Methods and Case Studies, Addison Wesley,
2002.

[SEI 2005] Software Engineering Instititue, Quality Attribute Workshop, 2005.
http://www.sei.cmu.edu/architecture/products_services/qaw.html

Disclaimers
The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

The views and conclusions contained in this column are solely those of the authors
and should not be interpreted as representing official policies, either expressed or
implied, of the Software Engineering Institute, Carnegie Mellon University, the U.S. Air
Force, the U.S. Department of Defense, or the U.S. Government.

VOL. 5. NO.2 JOURNAL OF OBJECT TECHNOLOGY 73

About the authors
Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute (SEI), where he helps the US
Government acquire large, complex, software-intensive systems.
Working in industrial software development since 1979, he has worked
primarily with object technology since 1984 and has written 5 books on
the subject. During the last four years, he has developed the world’s

largest (1,100+ webpage), free, and open source informational website of reusable
process engineering components. Based on the OPEN Process Framework (OPF), it is
located at http://www.opfro.org. Currently writing a book on the engineering of safety
and security-related requirements, he can be reached at dgf@sei.cmu.edu.

Dr. Peter Capell is a senior member of the technical staff at the SEI,
where he works with Donald Firesmith supporting Government
acquisitions. He is an Adjunct Faculty member of the Carnegie Mellon
School of Computer Science. He is the author of publications related to
software process improvement as well as intelligent tutoring systems.
He is a past Director and past Education Chair of the Pittsburgh Chapter

of IEEE, member of Sigma Xi, the International Visual Literacy Association (IVLA), and
American Educational Research Association (AERA).

